Erasmus+ proj. no. 2020-1-PTO1-KA203-078646
SusTrainable - Promoting Sustainability as a Fundamental Driver in

Software Development Training and Education Tral nable

WEEE’ VERIFIED SOFTWARE IN VIRTUAL
<y ENVIRONMENTS
= " (DEVELOPMENT OF CORRECT SOFTWARE WITH
FORMAL METHODS)

\\\ / 2N -
> ”(\: E/U Stefan Korecko

Department of Computers and Informatics
Faculty of Electrical Eng(mg.erlng and Informatics
Technical University of Kosice

stefan.korecko@tuke.sk

4-8 July, 2022, Rijeka @ SusTrainable Summer School

https://kpi.fei.tuke.sk/en/person/stefan-korecko

o Verified Software Development This presentation
o verification vs validation https: / /bit.ly /VsInVePrez
0 Validation in Virtual Environments v o
o relation to sustainability E, E r:-.: E
0 Cleaning Robot Case Study E] k.
O assignment
O technologies
0 development process
o verified controller development
o building virtual environment o ._?_’_, B
for validation § §
- a e

https://bit.ly/VsInVePrez

- Verified Software Development

0 Verified sw development
o = sw development with formal methods (FM)

0 In verified sw development

o correctness is proved against formally specified requirements
(verification)

o no way to check formally whether the requirements are correct
(validation)

0 FM allow us to have sw specifications for verification early

1 How to prepare environments (contexts) for validation early,
too?

0 E.g. in B-Method

FS = Formal Specification

Informal requirements

V1‘ormc||iz<:|’rion

(chhine (FS)

Properties

Data & Operations |

~

refines
Y

-

Refinement 1
Properties

Data & Operations

lrefines

lrefines

Implementation

Properties
Data & Operations

Translation

A4

)

Code

Verification

00 Checks whether the system
has the desired properties

O By theorem proving
or model checking

O The properties
have to be formalized

Informal requirements

lformqlizq’rion

Machine (FS)
Properties €«<——_
Data & Operations -

~

)verifica’rion

verification refines
\ 4
Refinement 1
Properties
Data & Operations
verification . ‘
lrefines
[
.0
lrefines 5
verification g
Implementation | =

A4

Code

Properties
Data & Operations

Validation

0 Checks whether

the formalized properties
capture the informal
requirements
O Manual check:

properties vs. requirements
O Animation

® “running” the specification

If the organization has not built the
right system (validation), no amount of
building the system right (verification)

can overcome that error.”
(J. Bowen and M. Hinchey, 2006)

Informal requirements

validation

lformqlizq’rion

(chhine (FS)

Properties

Data & Operations |

N

refines
Y

e

Refinement 1
Properties

Data & Operations

lrefines

lrefines

Implementation

Properties
Data & Operations

Translation

A4

)

Code

- Validation in Virtual Environments

0 To obtain environments (context) for validation

O use virtual environments
m Web-based (online)
m Shared

m Capturing only those aspects of the real context that are
important for the validation

1 Why now?

O Easy access to virtual environments

® Can run directly in a web browser
m Computers powerful enough
m Software frameworks available

O VR hardware (VR headsets)
= Affordable: about 500 Eur /unit
® Full immersion possible
® Real-time motion tracking

0 It contributes to the environmental and economic
sustainability.

0 Virtual prototype
O instead of a real one

0 Testers (validators) may access the system online
O No need to travel

0 Re-usability of assets when building virtual environments

- Cleaning Robot Case Study

Assignment & Technologies
Development Process Overview
Verified Controller Development

Building Virtual Environment for Validation

1 Assignment:
Develop
Oa verified software controller prototype and
Oa virtual environment to validate the prototype

for an autonomous cleaning robot.

0 Try the result now
Ohttps: / /bit.ly /VsInVeC

https://bit.ly/VsInVeC

The autonomous cleaning robot

0 Task: To clean several locations ina public space.

nnw
0 Has a sensor array to detect persons nearby.

0 Safety properties

0 The cleaning cannot start or continue if anyone gets '
as close or closer to the robot as safeDstCl.

0 The robot cannot move if anyone gets as close
or closer to its front as safeDstMov.

WSW

SSwW

—— maxMsrblDst
————— safeDstCl

- - —safeDstMov

0 cBot cannot move if anyone gets as close
or closer to its front as safeDstMov.

o What is frontee?

cBot
destination

nnNw nne
Front of
315° 45° cBot
(2700")
wnw/ ene
270% f 90°
WSW N ese
225° I 135°
SSW sSSe

0 Formal method for sw development

o B-Method

m Atelier-B, https://www.atelierb.eu/en/

m BKPI compiler,
https: / /hron.fei.tuke.sk /~korecko /FMInGamesExp /resources /BKPICompiler.zip

0 Virtual environment

O Web-based virtual reality
® A-Frame, https://aframe.io/
® Networked-Aframe, https://github.com/networked-aframe /networked-aframe

https://www.atelierb.eu/en/
https://hron.fei.tuke.sk/~korecko/FMInGamesExp/resources/BKPICompiler.zip
https://aframe.io/
https://github.com/networked-aframe/networked-aframe

- Cleaning Robot Case Study

Assignment & Technologies

Development Process Overview

Verified Controller Development

Building Virtual Environment for Validation

Informal requirements
system environment

formalization

(Machine (FS)

Properties
Data & Operations

Informal requirements
system environment

formalization

Machine (FS)
Properties €——

verification
Data & Operations -17

Informal requirements
system environment

formalization

Machine (FS)
Properties €——

verification
Data & Operations -17

verification

refines
N2

Implementation J

Informal requirements

system environment
formalization

Machine (FS)
Properties €——

verification
Data & Operations -/]

verification

refines
N2

Implementation J

translation

A4

Exec. Prototype
(code)

Informal requirements

system environment
formalization
implementation

Machine (FS)
Properties €——

Data & Operations —

Virtual
Environment

bverification

verification

refines
N2

Implementation J

translation

A4

Exec. Prototype
(code)

Informal requirements

system environment
formalization
implementation

Machine (FS)
Properties €——

Data & Operations —

Virtual
Environment

bverification

verification

refines
N2

Exec. Prototype

Implementation J

-
- -

translation| __-"7 P

-
\/ f’ -

Exec. Prototype
(code)

Informal requirements

system environment
formalization
implementation

Machine (FS) validation
Properties €«——

Data & Operations —

Virtual
Environment

bverification

verification

refines
N2

Exec. Prototype

Implementation J

-
- -

translation| __-"7 P

-
\/ f’ -

Exec. Prototype
(code)

Informal requirements
system

formalization

(MACHINE h

CbotController
(maxMsrblDst, safeDstCl, safeDstMov, cleanRange)

OPERATIONS
botOn, botCleaning, angleinMin, dst <--
updateAndEvaluate(command,p2gAnglelinMin,
p2gDst, nne, ene, ese, sse,

\ SSW, WSW, Wnw, nnw)

(MACHINE)
CbotControllerCore
(maxMsrblDst, safeDstCl, safeDstMov, cleanRange)

OPERATIONS
botOn , botCleaning , anglelnMin , dst <--
getinstr4Bot

readGoalPosAndSensors (angleinMin,dst,

(MACHINE h
ProximSensors(maxMsrblDst)

CONCRETE_VARIABLES
sensorsData

OPERATIONS
readSensors(nne, ene, ese, sse,

J nne, ene, ese, SSe, SSW, WSW, Wnw, nnw) bb<allCl ss(g’)t‘;"swx wnw, nnw)
standBy <-alllearids
REFINES goToPosAndClean \bb<--frontCIear(angle,dst)
goToPosAndNoClean Y,
IMPORTS REFINES
J REFINES IMPORTS
A \ \
p L
IMPLEMENTATION IMPLEMENTATION IMPLEMENTATION

CbotController_i (*)

OPERATIONS *

CbotControllerCore _i (*)

CONCRETE_CONSTANTS
EV_STEP, EV_START

CONCRETE_VARIABLES

isOn, isCleaning, willBeOn, willClean,
goalAngle, goalDst, pos2goAngle, pos2goDst,
evDst, evAngle

L OPERATIONS *

/translc’rion

pd

Exec. Prototype | -~

(code) g

ProximSensors_i (*)
CONCRETE_VARIABLES *

OPERATIONS *

environment

d

-
% e

’/’e(’(\\?/
~

implementation

0 https: //lirkis-cbot-simple.glitch.me /
o Citizen representing a tester (validator)
0 https: / /lirkis-cbot-simple.glitch.me /cbot.html
O the autonomous cleaning robot with the verified software controller

4

citizens cBot

https://lirkis-cbot-simple.glitch.me/
https://lirkis-cbot-simple.glitch.me/cbot.html

- Cleaning Robot Case Study

Assignment & Technologies

Development Process Overview

Verified Controller Development

Building Virtual Environment for Validation

0 Works within a main controller that controls the whole cBot and its
interaction with the virtual environment

® Implemented in
cbot-master-controller.component. s

0 In each step (frame), the main controller operates like this:
1. Check what should be done, i.e. clean a position or go to a parking position.

2. Check position of other citizens (users) in the scene.

3. Call the verified controller (function updateAndEvaluate) to decide what to do,
without endangering other citizens.

4. Update the cBot position, state and colors according to the output of the verified controller.
Aslo update the dirty positions.

0 Specified in
CBotControllerCore i.1mp

0 The cleaning cannot start or continue 3152

if anyone gets as close or closer
to the robot as safeDstCl.

0 ((willClean=TRUE) => wnw

cBot
destination

Front of

45" cBot

(2700")

ene

90°

(I'xx. ((xx:(0..7)) => 2704
sensorsData (xx) >safeDstCl)))

WSW

0 The robot cannot move if anyone gets
as close or closer to its front as safeDstMowv.

O ((pos2goDst>0)=>
(sensorsData (((pos2goAngle/2700) +7)mod 8)
>safeDstMov &
sensorsData (pos2goAngle/2700)
>safeDstMov &
sensorsData (((pos2goAngle / 2700)+1)
>safeDstMov))

SSw

mod 8)

180°

Sse

ese

(MACHINE N\ (MACHINE N\ (MACHINE A

CbotController CbotControllerCore ProximSensors(maxMsrblDst)
(maxMsrbIDst, safeDstCl, safeDstMov, cleanRange) (maxMsrblDst, safeDstCl, safeDstMov, cleanRange)
CONCRETE_VARIABLES
OPERATIONS OPERATIONS sensorsData
botOn, botCleaning, anglelnMin, dst <-- botOn , botCleaning , anglelnMin , dst <--
updateAndEvaluate(command,p2gAngleinMin, getinstr4Bot OPERATIONS
p2gDst, nne, ene, ese, sse, readGoalPosAndSensors (anglelnMin dst, readSensors(nne, ene, ese, sse,
\ SSW, WSw, wnw, nnw) y, nne, ene, ese, Sse, SSW, WSW, Wnw, nnw) peallCl SS(‘éVst‘;VSW, wnw, nnw)
standBy —afiblearlds
REFINES goToPosAndClean \bb<--frontCIear(angIe,dst y
goToPosAndNoClean)
IMPORTS REFINES
lREFIN ES IMPORTS
y
IMPLEMENTATION [IMPLEMENTATION (IMPLEMENTATION
CbotController_i (*) CbotControllerCore_i (*) ProximSensors _i (*)

OPERATIONS * CONCRETE_CONSTANTS CONCRETE VARIABLES *
EV_STEP, EV_START B

OPERATIONS *
Command: CONCRETE_VARIABLES L)

isOn, isCleaning, willBeOn, willClean,

1 — go to a dirty position and clean goalAngle, goalDst, pos2goAngle, pos2goDst,
3 — go to a parking position and turn off evDst, evAngle

OPERATIONS *

0 https://hron.fei.tuke.sk /~korecko /sustr22 /cleanbotCont
rollerBMethod.zip

O Specification of the verified controller in B-language

0 The full code of the components

1 Tools needed

O https://www.atelierb.eu/en/
® B-Method Tool
m If you would like to try to prove the verified controller by yourself

O https://hron.fei.tuke.sk /~korecko /FMInGamesExp /resources
/BKPICompiler.zip

m BKPI compiler (Java application)

® To translate implementations in B-language to JavaScript

https://hron.fei.tuke.sk/~korecko/sustr22/cleanbotControllerBMethod.zip
https://www.atelierb.eu/en/
https://hron.fei.tuke.sk/~korecko/FMInGamesExp/resources/BKPICompiler.zip

- Cleaning Robot Case Study

Assignment & Technologies
Development Process Overview

Verified Controller Development

Building Virtual Environment for
Validation

0 Web-based virtual reality technologies used
0 A-Frame, https://aframe.io/
0 Networked-Aframe, https://qgithub.com /networked-aframe /networked-aframe

0 How to start building the environment
A Online, at https://glitch.com/
8. Offline, using node.js

https://aframe.io/
https://github.com/networked-aframe/networked-aframe
https://glitch.com/

1. If you do not have one, create an account at https://glitch.com/ .
2. Log in at https://glitch.com/

3. Goto
https: //glitch.com /edit /#!/lirkis-cbot-simple-starter

4. Hit the Remix button in the top right part of the page.

0 Next, you can

Rename the project: Run the project (index.html):
@ lirkis-cbot-simple « README.md The shared environment has been created
- . Sianifi ¢ .| Oenpreview pane
o Settings Igniticant « R 1
N . lirkis-cbot-simple & sTaTus 37 LoGS M TERMINAL [@"TOOLS | J0 PREVIEW :
i

A simplified version of the LIRKIS G-CVE ECA Showcase
1 with a cleaning robot in a shared environment. By Stefan

Korecko

Edit project details

https://glitch.com/
https://glitch.com/
https://glitch.com/edit/#!/lirkis-cbot-simple-starter

1. If you don't have node.js, download it from

https:/ /nodejs.org/en/download /
and install it with standard settings

2. Create a folder for your project

3. Unpack the archive
http: / /hron.fei.tuke.sk /~korecko /sustr22 /lirkis-cbot-simple-starter.zip

to the created folder

4. Go to the created folder and from the command line run npm
install

0 Next, you can
1. Run the server with the command npm start

2. Open the page in browser
m hitp://localhost:8080/
m hitp://localhost:8080 /cbot.html

http://hron.fei.tuke.sk/~korecko/sustr22/lirkis-cbot-simple-starter.zip
http://localhost:8080/
http://localhost:8080/cbot.html

0 Thank you for your attention.

1 Questions?

@

>kpi

The information and views set out in this presentation are
those of the author(s) and do not necessarily reflect the
official opinion of the European Union. Neither the
European Union institutions and bodies nor any person
acting on their behalf may be held responsible for the use
which may be made of the information contained therein.

:@: S UDS
Al rainable

Project No. 2020-1-PTO1-KA203-078646
Promoting Sustainability as a Fundamental
Driver in Software Development Training
and Education

Co-funded by the
Erasmus+ Programme
of the European Union

