
VERIFIED SOFTWARE IN VIRTUAL

ENVIRONMENTS
(DEVELOPMENT OF CORRECT SOFTWARE WITH

FORMAL METHODS)

Štefan Korečko

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics
Technical University of Košice

https://kpi.fei.tuke.sk/en/person/stefan-korecko

stefan.korecko@tuke.sk

4–8 July, 2022, Rijeka SusTrainable Summer School

Erasmus+ proj. no. 2020-1-PT01-KA203-078646

SusTrainable - Promoting Sustainability as a Fundamental Driver in

Software Development Training and Education

https://kpi.fei.tuke.sk/en/person/stefan-korecko

Contents

 Verified Software Development
 verification vs validation

 Validation in Virtual Environments

 relation to sustainability

 Cleaning Robot Case Study

 assignment

 technologies

 development process

 verified controller development

 building virtual environment
for validation

Le
ct

u
re

P
ra

ct
ic

e

(e
x
e
rc

is
e
)

This presentation

https://bit.ly/VsInVePrez

https://bit.ly/VsInVePrez

Verified Software Development

Verified software development

 Verified sw development
= sw development with formal methods (FM)

 In verified sw development
correctness is proved against formally specified requirements

(verification)

no way to check formally whether the requirements are correct
(validation)

 FM allow us to have sw specifications for verification early

 How to prepare environments (contexts) for validation early,
too?

How verified sw development works

 E.g. in B-Method

FS = Formal Specification
Machine (FS)
Properties

Data & Operations

Implementation
Properties

Data & Operations

formalization

refines

refines

refines

Refinement 1
Properties

Data & Operations

…

Informal requirements

C
o
d
eTr

a
n
sl

a
ti
o
n

Verified sw development: verification

Verification
 Checks whether the system

has the desired properties

 By theorem proving
or model checking

 The properties
have to be formalized

Machine (FS)
Properties

Data & Operations

Implementation
Properties

Data & Operations

formalization

refines

refines

refines

Refinement 1
Properties

Data & Operations

…

Informal requirements

verification

verification

verification

verification

C
o
d
eTr

a
n
sl

a
ti
o
n

Verified sw development: validation

Validation
 Checks whether

the formalized properties
capture the informal
requirements

 Manual check:
properties vs. requirements

 Animation

◼ “running” the specification

Machine (FS)
Properties

Data & Operations

Implementation
Properties

Data & Operations

formalization

refines

refines

refines

Refinement 1
Properties

Data & Operations

…

Informal requirements

validation

If the organization has not built the
right system (validation), no amount of
building the system right (verification)
can overcome that error.“
(J. Bowen and M. Hinchey, 2006)

C
o
d
eTr

a
n
sl

a
ti
o
n

Validation in Virtual Environments

Validation in virtual environments

 To obtain environments (context) for validation
 use virtual environments

◼ Web-based (online)
◼ Shared
◼ Capturing only those aspects of the real context that are

important for the validation

 Why now?
 Easy access to virtual environments

◼ Can run directly in a web browser
◼ Computers powerful enough

◼ Software frameworks available

 VR hardware (VR headsets)
◼ Affordable: about 500 Eur/unit

◼ Full immersion possible

◼ Real-time motion tracking

Relation to Sustainability

 It contributes to the environmental and economic
sustainability.

 Virtual prototype

 instead of a real one

 Testers (validators) may access the system online
 No need to travel

 Re-usability of assets when building virtual environments

Assignment & Technologies

Development Process Overview

Verified Controller Development

Building Virtual Environment for Validation

Cleaning Robot Case Study

Case Study Assignment I

Assignment:
Develop
a verified software controller prototype and

a virtual environment to validate the prototype

for an autonomous cleaning robot.

 Try the result now
https://bit.ly/VsInVeC

https://bit.ly/VsInVeC

Case Study Assignment II

The autonomous cleaning robot
 Task: To clean several locations ina public space.

 Has a sensor array to detect persons nearby.

 Safety properties
 The cleaning cannot start or continue if anyone gets

as close or closer to the robot as safeDstCl.

 The robot cannot move if anyone gets as close
or closer to its front as safeDstMov.

Case Study Assignment II: What is front?

 cBot cannot move if anyone gets as close
or closer to its front as safeDstMov.

 What is front???

cBot

destination

Front of

cBot

Technologies used

 Formal method for sw development
 B-Method

◼ Atelier-B, https://www.atelierb.eu/en/

◼ BKPI compiler,
https://hron.fei.tuke.sk/~korecko/FMInGamesExp/resources/BKPICompiler.zip

 Virtual environment
 Web-based virtual reality

◼ A-Frame, https://aframe.io/

◼ Networked-Aframe, https://github.com/networked-aframe/networked-aframe

https://www.atelierb.eu/en/
https://hron.fei.tuke.sk/~korecko/FMInGamesExp/resources/BKPICompiler.zip
https://aframe.io/
https://github.com/networked-aframe/networked-aframe

Assignment & Technologies

Development Process Overview

Verified Controller Development

Building Virtual Environment for Validation

Cleaning Robot Case Study

Case study: development process

Machine (FS)
Properties

Data & Operations

Informal requirements

formalization
system environment

Case study: development process

Machine (FS)
Properties

Data & Operations

Informal requirements

verification

formalization
system environment

Case study: development process

Machine (FS)
Properties

Data & Operations

Implementation

refines

Informal requirements

verification

verification

formalization
system environment

Case study: development process

Machine (FS)
Properties

Data & Operations

Implementation

refines

Informal requirements

verification

verification

translation

formalization
system environment

Exec. Prototype
(code)

Case study: development process

Machine (FS)
Properties

Data & Operations

Implementation

refines

Informal requirements

verification

verification

translation

formalization
system environment

implementation

Exec. Prototype
(code)

Virtual

Environment

Case study: development process

Machine (FS)
Properties

Data & Operations

Implementation

refines

Informal requirements

verification

verification

translation

formalization
system environment

implementation

Virtual

Environment

Exec. Prototype

Exec. Prototype
(code)

Case study: development process

Machine (FS)
Properties

Data & Operations

Implementation

refines

Informal requirements

verification

verification

translation

formalization
system environment

implementation

validation

Virtual

Environment

Exec. Prototype

Exec. Prototype
(code)

Case study: development process

Informal requirements

formalization
system environment

implementation

translation

Exec. Prototype
(code)

Case study: final form

 https://lirkis-cbot-simple.glitch.me/
 Citizen representing a tester (validator)

 https://lirkis-cbot-simple.glitch.me/cbot.html

 the autonomous cleaning robot with the verified software controller

citizens cBot

https://lirkis-cbot-simple.glitch.me/
https://lirkis-cbot-simple.glitch.me/cbot.html

Assignment & Technologies

Development Process Overview

Verified Controller Development

Building Virtual Environment for Validation

Cleaning Robot Case Study

Verified controller role

 Works within a main controller that controls the whole cBot and its
interaction with the virtual environment

◼ Implemented in
cbot-master-controller.component.js

 In each step (frame), the main controller operates like this:

1. Check what should be done, i.e. clean a position or go to a parking position.

2. Check position of other citizens (users) in the scene.

3. Call the verified controller (function updateAndEvaluate) to decide what to do,
without endangering other citizens.

4. Update the cBot position, state and colors according to the output of the verified controller.
Aslo update the dirty positions.

Safety properties formalization

 Specified in
CBotControllerCore_i.imp

 The cleaning cannot start or continue
if anyone gets as close or closer
to the robot as safeDstCl.
 ((willClean=TRUE) =>

(!xx.((xx:(0..7)) =>
sensorsData(xx)>safeDstCl)))

 The robot cannot move if anyone gets
as close or closer to its front as safeDstMov.
 ((pos2goDst>0)=>

(sensorsData(((pos2goAngle/2700)+7)mod 8)
>safeDstMov &

sensorsData(pos2goAngle/2700)
>safeDstMov &

sensorsData(((pos2goAngle / 2700)+1) mod 8)
>safeDstMov))

cBot

destination

Front of

cBot

Verified controller components

Command:

1 – go to a dirty position and clean

3 – go to a parking position and turn off

Verified controller details

 https://hron.fei.tuke.sk/~korecko/sustr22/cleanbotCont
rollerBMethod.zip

 Specification of the verified controller in B-language

 The full code of the components

 Tools needed

 https://www.atelierb.eu/en/
◼ B-Method Tool

◼ If you would like to try to prove the verified controller by yourself

 https://hron.fei.tuke.sk/~korecko/FMInGamesExp/resources
/BKPICompiler.zip
◼ BKPI compiler (Java application)

◼ To translate implementations in B-language to JavaScript

https://hron.fei.tuke.sk/~korecko/sustr22/cleanbotControllerBMethod.zip
https://www.atelierb.eu/en/
https://hron.fei.tuke.sk/~korecko/FMInGamesExp/resources/BKPICompiler.zip

Assignment & Technologies

Development Process Overview

Verified Controller Development

Building Virtual Environment for

Validation

Cleaning Robot Case Study

Building Virtual Environment

 Web-based virtual reality technologies used
 A-Frame, https://aframe.io/

 Networked-Aframe, https://github.com/networked-aframe/networked-aframe

 How to start building the environment
A. Online, at https://glitch.com/

B. Offline, using node.js

https://aframe.io/
https://github.com/networked-aframe/networked-aframe
https://glitch.com/

A. Building Virtual Environment Online

1. If you do not have one, create an account at https://glitch.com/ .

2. Log in at https://glitch.com/

3. Go to
https://glitch.com/edit/#!/lirkis-cbot-simple-starter

4. Hit the Remix button in the top right part of the page.

 Next, you can
Rename the project: Run the project (index.html):

https://glitch.com/
https://glitch.com/
https://glitch.com/edit/#!/lirkis-cbot-simple-starter

B. Building Virtual Environment Offline

1. If you don't have node.js, download it from
https://nodejs.org/en/download/
and install it with standard settings

2. Create a folder for your project
3. Unpack the archive

http://hron.fei.tuke.sk/~korecko/sustr22/lirkis-cbot-simple-starter.zip
to the created folder

4. Go to the created folder and from the command line run npm
install

 Next, you can
1. Run the server with the command npm start

2. Open the page in browser
◼ http://localhost:8080/
◼ http://localhost:8080/cbot.html

http://hron.fei.tuke.sk/~korecko/sustr22/lirkis-cbot-simple-starter.zip
http://localhost:8080/
http://localhost:8080/cbot.html

Thanks …

 Thank you for your attention.

 Questions?

The information and views set out in this presentation are

those of the author(s) and do not necessarily reflect the

official opinion of the European Union. Neither the

European Union institutions and bodies nor any person

acting on their behalf may be held responsible for the use

which may be made of the information contained therein.

Project No. 2020-1-PT01-KA203-078646

Promoting Sustainability as a Fundamental

Driver in Software Development Training

and Education

