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Verified Software Development



Verified software development

 Verified sw development
= sw development with formal methods (FM)

 In verified sw development
correctness is proved against formally specified requirements 

(verification)

no way to check formally whether the requirements are correct 
(validation)

 FM allow us to have sw specifications for verification early 

 How to prepare environments (contexts) for validation early, 
too? 



How verified sw development works

 E.g. in B-Method

FS = Formal Specification
Machine (FS)
Properties
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…
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Verified sw development: verification

Verification
 Checks whether the system 

has the desired properties

 By theorem proving 
or model checking

 The properties
have to be formalized

Machine (FS)
Properties

Data & Operations

Implementation
Properties

Data & Operations

formalization

refines

refines

refines

Refinement 1
Properties

Data & Operations

…
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Verified sw development: validation

Validation
 Checks whether 

the formalized properties 
capture the informal 
requirements

 Manual check:
properties vs. requirements

 Animation 

◼ “running” the specification

Machine (FS)
Properties

Data & Operations

Implementation
Properties

Data & Operations

formalization

refines

refines

refines

Refinement 1
Properties

Data & Operations

…

Informal requirements

validation

If the organization has not built the 
right system (validation), no amount of 
building  the system right (verification) 
can overcome that error.“
(J. Bowen and M. Hinchey, 2006)
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Validation in Virtual Environments



Validation in virtual environments

 To obtain environments (context) for validation
 use virtual environments

◼ Web-based (online)
◼ Shared
◼ Capturing only those aspects of the real context that are 

important for the validation 

 Why now?
 Easy access to virtual environments  

◼ Can run directly in a web browser  
◼ Computers powerful enough 

◼ Software frameworks available 

 VR hardware (VR headsets)
◼ Affordable: about 500 Eur/unit

◼ Full immersion possible 

◼ Real-time motion tracking 



Relation to Sustainability

 It contributes to the environmental and economic 
sustainability.

 Virtual prototype 

 instead of a real one

 Testers (validators) may access the system online
 No need to travel

 Re-usability of assets when building virtual environments



Assignment & Technologies
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Case Study Assignment I

Assignment:
Develop 
a verified software controller prototype and 

a virtual environment to validate the prototype 

for an autonomous cleaning robot. 

 Try the result now
https://bit.ly/VsInVeC

https://bit.ly/VsInVeC


Case Study Assignment II

The autonomous cleaning robot
 Task: To clean several locations ina public space.

 Has a sensor array to detect persons nearby.

 Safety properties
 The cleaning cannot start or continue if anyone gets 

as close or closer to the robot as safeDstCl.

 The robot cannot move if anyone gets as close 
or closer to its front as safeDstMov.



Case Study Assignment II: What is front?

 cBot cannot move if anyone gets as close 
or closer to its front as safeDstMov.

 What is front???

cBot

destination

Front of 

cBot



Technologies used

 Formal method for sw development
 B-Method

◼ Atelier-B, https://www.atelierb.eu/en/

◼ BKPI compiler, 
https://hron.fei.tuke.sk/~korecko/FMInGamesExp/resources/BKPICompiler.zip

 Virtual environment
 Web-based virtual reality

◼ A-Frame, https://aframe.io/

◼ Networked-Aframe, https://github.com/networked-aframe/networked-aframe

https://www.atelierb.eu/en/
https://hron.fei.tuke.sk/~korecko/FMInGamesExp/resources/BKPICompiler.zip
https://aframe.io/
https://github.com/networked-aframe/networked-aframe
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Case study: development process
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Data & Operations

Informal requirements

formalization
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Case study: development process

Informal requirements

formalization
system environment

implementation
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Exec. Prototype
(code)



Case study: final form

 https://lirkis-cbot-simple.glitch.me/
 Citizen representing a tester (validator)

 https://lirkis-cbot-simple.glitch.me/cbot.html

 the autonomous cleaning robot with the verified software controller

citizens                                                             cBot

https://lirkis-cbot-simple.glitch.me/
https://lirkis-cbot-simple.glitch.me/cbot.html
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Verified controller role

 Works within a main controller that controls the whole cBot and its 
interaction with the virtual environment

◼ Implemented in 
cbot-master-controller.component.js

 In each step (frame), the main controller operates like this:

1. Check what should be done, i.e. clean a position or go to a parking position.

2. Check position of other citizens (users) in the scene.

3. Call the verified controller (function updateAndEvaluate) to decide what to do, 
without endangering other citizens.

4. Update the cBot position, state and colors according to the output of the verified controller. 
Aslo update the dirty positions.



Safety properties formalization

 Specified in 
CBotControllerCore_i.imp

 The cleaning cannot start or continue 
if anyone gets as close or closer 
to the robot as safeDstCl.
 ((willClean=TRUE) => 

(!xx.((xx:(0..7)) => 
sensorsData(xx)>safeDstCl)))

 The robot cannot move if anyone gets 
as close or closer to its front as safeDstMov.
 ((pos2goDst>0)=>

(sensorsData(((pos2goAngle/2700)+7)mod 8) 
>safeDstMov &                        

sensorsData(pos2goAngle/2700)
>safeDstMov &                       

sensorsData(((pos2goAngle / 2700)+1) mod 8)
>safeDstMov))

cBot

destination

Front of 

cBot



Verified controller components

Command:

1 – go to a dirty position and clean

3 – go to a parking position and turn off



Verified controller details

 https://hron.fei.tuke.sk/~korecko/sustr22/cleanbotCont
rollerBMethod.zip

 Specification of the verified controller in B-language

 The full code of the components

 Tools needed

 https://www.atelierb.eu/en/
◼ B-Method Tool

◼ If you would like to try to prove the verified controller by yourself

 https://hron.fei.tuke.sk/~korecko/FMInGamesExp/resources
/BKPICompiler.zip
◼ BKPI compiler (Java application)

◼ To translate implementations in B-language to JavaScript

https://hron.fei.tuke.sk/~korecko/sustr22/cleanbotControllerBMethod.zip
https://www.atelierb.eu/en/
https://hron.fei.tuke.sk/~korecko/FMInGamesExp/resources/BKPICompiler.zip
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Building Virtual Environment 

 Web-based virtual reality technologies used
 A-Frame, https://aframe.io/

 Networked-Aframe, https://github.com/networked-aframe/networked-aframe

 How to start building the environment
A. Online, at https://glitch.com/

B. Offline, using node.js

https://aframe.io/
https://github.com/networked-aframe/networked-aframe
https://glitch.com/


A. Building Virtual Environment Online 

1. If you do not have one, create an account at https://glitch.com/ .

2. Log in at https://glitch.com/

3. Go to 
https://glitch.com/edit/#!/lirkis-cbot-simple-starter

4. Hit the Remix button in the top right part of the page.

 Next, you can
Rename the project:                                                Run the project (index.html):

https://glitch.com/
https://glitch.com/
https://glitch.com/edit/#!/lirkis-cbot-simple-starter


B. Building Virtual Environment Offline 

1. If you don't have node.js, download it from
https://nodejs.org/en/download/
and install it with standard settings

2. Create a folder for your project
3. Unpack the archive 

http://hron.fei.tuke.sk/~korecko/sustr22/lirkis-cbot-simple-starter.zip
to the created folder

4. Go to the created folder and from the command line run npm
install

 Next, you can
1. Run the server with the command npm start

2. Open the page in browser
◼ http://localhost:8080/
◼ http://localhost:8080/cbot.html

http://hron.fei.tuke.sk/~korecko/sustr22/lirkis-cbot-simple-starter.zip
http://localhost:8080/
http://localhost:8080/cbot.html


Thanks …

 Thank you for your attention.

 Questions?

The information and views set out in this presentation are

those of the author(s) and do not necessarily reflect the

official opinion of the European Union. Neither the

European Union institutions and bodies nor any person

acting on their behalf may be held responsible for the use

which may be made of the information contained therein.
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