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- Verified Software Development



0 Verified sw development
o = sw development with formal methods (FM)

0 In verified sw development

o correctness is proved against formally specified requirements
(verification)

o no way to check formally whether the requirements are correct
(validation)

0 FM allow us to have sw specifications for verification early

1 How to prepare environments (contexts) for validation early,
too?



0 E.g. in B-Method
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Verification

00 Checks whether the system
has the desired properties

O By theorem proving
or model checking

O The properties
have to be formalized

Informal requirements

lformqlizq’rion

Machine (FS)
Properties €«<——_
Data & Operations -

~

)verifica’rion

verification refines
\ 4
Refinement 1
Properties
Data & Operations
verification . ‘
lrefines
[
.0
lrefines 5
verification g
Implementation | =

A4

Code

Properties
Data & Operations




Validation

0 Checks whether

the formalized properties
capture the informal
requirements
O Manual check:

properties vs. requirements
O Animation

® “running” the specification

If the organization has not built the
right system (validation), no amount of
building the system right (verification)

can overcome that error.”
(J. Bowen and M. Hinchey, 2006)
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- Validation in Virtual Environments



0 To obtain environments (context) for validation

O use virtual environments
m Web-based (online)
m Shared

m Capturing only those aspects of the real context that are
important for the validation

1 Why now?

O Easy access to virtual environments

® Can run directly in a web browser
m Computers powerful enough
m Software frameworks available

O VR hardware (VR headsets)
= Affordable: about 500 Eur /unit
® Full immersion possible
® Real-time motion tracking



0 It contributes to the environmental and economic
sustainability.

0 Virtual prototype
O instead of a real one

0 Testers (validators) may access the system online
O No need to travel

0 Re-usability of assets when building virtual environments
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1 Assignment:
Develop
Oa verified software controller prototype and
Oa virtual environment to validate the prototype

for an autonomous cleaning robot.

0 Try the result now
Ohttps: / /bit.ly /VsInVeC



https://bit.ly/VsInVeC

The autonomous cleaning robot

0 Task: To clean several locations ina public space.

nnw
0 Has a sensor array to detect persons nearby.

0 Safety properties

0 The cleaning cannot start or continue if anyone gets '
as close or closer to the robot as safeDstCl.

0 The robot cannot move if anyone gets as close
or closer to its front as safeDstMov.
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0 cBot cannot move if anyone gets as close
or closer to its front as safeDstMov.

o What is frontee?

cBot
destination
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0 Formal method for sw development

o B-Method

m Atelier-B, https://www.atelierb.eu/en/

m BKPI compiler,
https: / /hron.fei.tuke.sk /~korecko /FMInGamesExp /resources /BKPICompiler.zip

0 Virtual environment

O Web-based virtual reality
® A-Frame, https://aframe.io/
® Networked-Aframe, https://github.com/networked-aframe /networked-aframe



https://www.atelierb.eu/en/
https://hron.fei.tuke.sk/~korecko/FMInGamesExp/resources/BKPICompiler.zip
https://aframe.io/
https://github.com/networked-aframe/networked-aframe
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Informal requirements
system

formalization
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0 https: //lirkis-cbot-simple.glitch.me /
o Citizen representing a tester (validator)
0 https: / /lirkis-cbot-simple.glitch.me /cbot.html
O the autonomous cleaning robot with the verified software controller

4

citizens cBot


https://lirkis-cbot-simple.glitch.me/
https://lirkis-cbot-simple.glitch.me/cbot.html
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0 Works within a main controller that controls the whole cBot and its
interaction with the virtual environment

® Implemented in
cbot-master-controller.component. s

0 In each step (frame), the main controller operates like this:
1. Check what should be done, i.e. clean a position or go to a parking position.

2. Check position of other citizens (users) in the scene.

3. Call the verified controller (function updateAndEvaluate) to decide what to do,
without endangering other citizens.

4. Update the cBot position, state and colors according to the output of the verified controller.
Aslo update the dirty positions.



0 Specified in
CBotControllerCore i.1mp

0 The cleaning cannot start or continue 3152

if anyone gets as close or closer
to the robot as safeDstCl.

0 ((willClean=TRUE) => wnw
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(MACHINE N\ (MACHINE N\ (MACHINE A
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3 — go to a parking position and turn off evDst, evAngle

OPERATIONS *




0 https://hron.fei.tuke.sk /~korecko /sustr22 /cleanbotCont
rollerBMethod.zip

O Specification of the verified controller in B-language

0 The full code of the components

1 Tools needed

O https://www.atelierb.eu/en/
® B-Method Tool
m If you would like to try to prove the verified controller by yourself

O https://hron.fei.tuke.sk /~korecko /FMInGamesExp /resources
/BKPICompiler.zip

m BKPI compiler (Java application)

® To translate implementations in B-language to JavaScript


https://hron.fei.tuke.sk/~korecko/sustr22/cleanbotControllerBMethod.zip
https://www.atelierb.eu/en/
https://hron.fei.tuke.sk/~korecko/FMInGamesExp/resources/BKPICompiler.zip
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0 Web-based virtual reality technologies used
0 A-Frame, https://aframe.io/
0 Networked-Aframe, https://qgithub.com /networked-aframe /networked-aframe

0 How to start building the environment
A Online, at https://glitch.com/
8. Offline, using node.js



https://aframe.io/
https://github.com/networked-aframe/networked-aframe
https://glitch.com/

1. If you do not have one, create an account at https://glitch.com/ .
2. Log in at https://glitch.com/

3. Goto
https: //glitch.com /edit /#!/lirkis-cbot-simple-starter

4. Hit the Remix button in the top right part of the page.

0 Next, you can

Rename the project: Run the project (index.html):
@ lirkis-cbot-simple « README.md The shared environment has been created
- . Sianifi ¢ .| Oenpreview pane
o Settings Igniticant « R 1
N . lirkis-cbot-simple & sTaTus 37 LoGS M TERMINAL  [@"TOOLS | J0 PREVIEW :
i

A simplified version of the LIRKIS G-CVE ECA Showcase
1 with a cleaning robot in a shared environment. By Stefan

Korecko

Edit project details


https://glitch.com/
https://glitch.com/
https://glitch.com/edit/#!/lirkis-cbot-simple-starter

1. If you don't have node.js, download it from

https:/ /nodejs.org/en/download /
and install it with standard settings

2. Create a folder for your project

3. Unpack the archive
http: / /hron.fei.tuke.sk /~korecko /sustr22 /lirkis-cbot-simple-starter.zip

to the created folder

4. Go to the created folder and from the command line run npm
install

0 Next, you can
1. Run the server with the command npm start

2. Open the page in browser
m hitp://localhost:8080/
m hitp://localhost:8080 /cbot.html



http://hron.fei.tuke.sk/~korecko/sustr22/lirkis-cbot-simple-starter.zip
http://localhost:8080/
http://localhost:8080/cbot.html

0 Thank you for your attention.

1 Questions?

@

>kpi
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