Modelling & Simulation Logic Simulation

Štefan Korečko

Department of Computers and Informatics Faculty of Electrical Engineering and Informatics Technical University of Košice Slovak Republic

stefan.korecko@tuke.sk

2023

Logic simulation

- = digital simulation, digital circuits simulation
- simulates operation of logic systems
 - logic system = logic circuit = digital circuit
 - signals are represented by discrete bands of analog levels
- Used for
 - o design & development
 - to validate/verify the design
 - at different levels of abstraction
 - o diagnostics
 - to check completeness of tests
 - Simulation with/without known errors

Levels of logic circuits design

Level	Systems	Elements	Signal units
Electronic System Level (ESL)	Computer systems	CPU, memory, I/O devices, channels,	word blocks
Register transfer level (RTL)	CPU, ALU, memory,	register, coder, decoder	words (sequences of bites)
Gate level (Logic circuits level)	register, coder, counter	gates (and, or,), flip-flops(D, JK,)	bites
Electronic circuit I. (Transistor level)	gates, flip-flops	transistor, diode, capacitor,	voltage levels
Physical level	transistor, diode, resistor	diffusion areas, contacts	-(physical dimensions)

Levels & logic simulation I

Not a logic simulation:

- Electronic system level (ESL)
 - = behavioural level
 - as queuing systems
- Electronic circuit level
 - utilises electrical laws (Kirchhoff's, Ohm's)
 - dynamic behaviour equations (differential)
 - continuous systems
- Physical level

Levels & logic simulation II

Belongs to logic simulation:

- RTL
- Gate level
- o Distinction between these levels is not that clear
 - often mixed in designs
 - simulation at several levels at once is possible
- Models of elements
 - mathematical (esp. at gate level): Boolean algebra, finite automata
 - behaviour often described in VHDL
- Logic simulation = a special case of discrete simulation

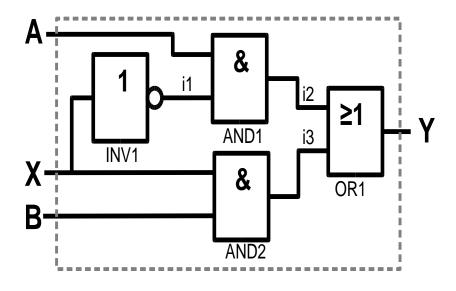
Modelling of digital circuits

- Modelling languages
- Signal models
- Timing models
- Fault models

Modelling of digital circuits Modelling languages

Describing only structure

- Fixed library of elements (gates, flip-flops, registers,...)
- elements can be parameterised
- Describing structure and behaviour
 - Can define new elements
 - inputs, outputs + behaviour in the language
 - GPPLs can be used
 - Hardware description languages: VHDL, Verilog


Hierarchical design

New elements defined by existing ones

Model examples (2-to-1 1 bit multiplexer)

library IEEE; use IEEE.STD_LOGIC_1164.ALL;

entity mux_2to1 is Port (A: in STD_LOGIC; B: in STD_LOGIC; X: in STD_LOGIC; Y: out STD_LOGIC); end mux_2to1;

architecture Behavioral of mux_2to1 is begin

 $Y \le A$ when (X = '0') else B; end Behavioral;

$$Y = (A \cdot \overline{X}) + (B \cdot X)$$

Modelling of digital circuits

Signal models

- L, H
 - L = low (0); H = high (1)
- L, H, u
 - u (or X) = undefined, unknown (0 or 1)
 - to model unknown states (i.e. of flip-flop after powered up) or some kinds of hazards (oscillations)
- L, H, u, Z
 - Z = high impedance
 - third value of tristate gates
- L, H, u, R, F
 - $R = rise (0 \rightarrow 1)$
 - $F = fall (1 \rightarrow 0)$
- Additional values for hazards
- Simulation of MOS Digital Circuits
 - o strong/weak L, H

Modelling of digital circuits Note:: hazards

undesirable effects of delays

Static hazard

- Static-1
 - the output is currently 1 and after the inputs change, the output momentarily changes to 0 before settling on 1
- Static-0
 - vice versa
- Dynamic hazard
 - possibility of an output changing more than once as a result of a single input change.

Modelling of digital circuits
Timing models

- zero-delay model
 - no delay
 - only functional simulation
- unitary delay
- delay set as one value
- delay set as interval (min, max)

Modelling of digital circuits

Fault models

- To simulate faults in circuits when the simulation is used to evaluate diagnostic tests.
- At gate level
 - Single stuck line fault model
 - Stuck at 0 the given signal is always 0
 - Stuck at 1 the given signal is always 1
 - assumes that only one input on one gate will be faulty at a time
 - works well for TTL, moderately well for CMOS
 - short circuit between signal wires
- At RTL
 - o a fault represents a group of faults from lower level
 - memory faults, control faults, decoder faults,...

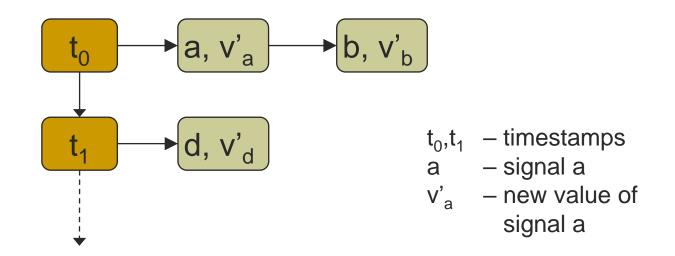
Logic Simulation Methods

- Compiled-code simulation
- Event-driven simulation

Logic Simulation Methods Compiled-code simulation

- The digital circuit model is translated into a series of machine instructions that model the functions of individual gates and the interconnects between them.
- Incapable of timing modelling
 - zero-delay model
 - o most effective for L, H signal model
 - machine instructions directly useable
- Used for cycle-based simulation

Logic Simulation Methods Event-driven simulation I


- Highly efficient
 - evaluates gates only when necessary
- Event
 - = switching of a signal value
- Event-driven simulator
 - monitors occurrences of events to determine which logic elements to evaluate
- Can handle any delay model
 - by means of event scheduler

Logic Simulation Methods Event-driven simulation II

- Event scheduler
 - Implemented as priority queue

Logic Simulation Software

Commercial

- Matlab
- o TINA
- Mentor Graphics FPGA Advantage
- Free
 - o Deeds
 - o Logsim
 - o Qucs

