Modelling & Simulation Pseudo-random Numbers

Štefan Korečko

Department of Computers and Informatics Faculty of Electrical Engineering and Informatics Technical University of Košice Slovak Republic

stefan.korecko@tuke.sk

2023

Contents

- (Pseudo)random numbers & variates
- Pseudo-random numbers generators
- Generation of random variates
- Further reading
 - [CSimTech] Harry Perros: Computer Simulation Techniques: The definitive introduction!, Computer Science Department NC State University Raleigh, NC, 2009, <u>https://repository.lib.ncsu.edu/handle/1840.2/2</u> 542

Random Numbers & Variates I

- Purpose (examples)
 - numerical analysis
 - solving of complicated integrals
 - cryptography
 - key generation & confirmation
 - Software development
 - generation of testing data
 - Simulation
 - as a source of randomness in the model

Random Numbers & Variates II

- We mean sequences of (pseudo-)random numbers
- True random numbers
 - generated by completely unpredictable and nonreproducible source
 - Physical phenomenon used as generators
 - radioactive source
 - thermal noise from a resistor or a semi-conductor diode
 - human computer interaction processes (i.e. mouse or keyboard use)

...

Random Numbers & Variates III

Pseudo-random numbers

- Generated by algorithms
- Generated in a deterministic way
 - Reproducible: by using the same starting value (seed) we get the same sequence
- Uniformly distributed in the space [0,1]
- Random variates
 - = stochastic variates
 - Pseudo-random numbers with other theoretical or empirical distribution as uniform in [0,1]

Random Numbers Generators

- Criteria for pseudo-random numbers generator output
 - o uniformly distributed
 - statistically independent
 - o reproducible
 - non-repeating for any desired length
- Numbers generated on demand
 - o usually one by one
- Generators
 - Mid-square
 - o Congruential
 - o Tausworthe
 - Lagged Fibonacci
 - Mercenne Twister
 - o ...

Mid-square

- (metóda stredu mocniny)
- Oldest
- By John von Neumann
- Number generation:
 - 1. Take the square of previously generated number
 - 2. Extract the middle digits
- Not recommended
 - o slow
 - (very) short period

Period

 number of successively generated pseudo-random numbers after which the sequence starts repeating itself

Congruential methods I

General formula

 X_{i+1} = (f(X_i, X_{i-1},...)) mod m
 has a full period if the period = m

 Quadratic congruential generator

 $x_{i+1} = (a_1 x_i^2 + a_2 x_{i-1} + c) \mod m$

Linear congruential generator

$$x_{i+1} = (ax_i + c) \mod m$$

Congruential methods II

- Linear c. g. $x_{i+1} = (ax_i + c) \mod m$
 - generates numbers between 0 and m-1
 - o simple & fast
 - pseudo-random numbers statistically acceptable for computer simulation
 - Period is full (i.e. =m) when
 - *m, c* have no common divisor
 - *a-1* is divisible by all prime factors of *m*
 - *a-1* is a multiple of *4* if *m* is a multiple of *4*
 - Optimisation: setting *m* to size of used register
 - mod = overflow

Congruential methods III

Composite generators

- Two separate generators (usually congruential) combined
- Has good statistical properties, even if the generators used are bad
- Example:
 - 1. Generate a sequence x_1 , ..., x_k using G1
 - 2. Generate an integer $r, r \in 1, ..., k$ using G2
 - 3. Return X_r
 - 4. Generate a new X_r using G1
 - Generate a new number by G1 and replace X_r with it
 - 5. Go to step 2

Lagged Fibonacci Generators

- =LFG (Oneskorené Fibonacciho generátory)
- Based on the Fibonacci sequence

•
$$X_n = X_{n-1} + X_{n-2}$$
 $X_0 = 0, X_1 = 1$

- General form
 - $X_n = (X_{n-j} Op X_{n-k}) \mod m$ • O < j < k• O < j < k
- Pros
 - very good statistical properties
 - o only a bit less efficient than congruential
 - can be parallelized
- Cons
 - highly sensitive on the seed
- Commonly used versions for Op = + ; m=2^M
 - o j=5, k=17, M=31
 - o j=24, k=55, M=31

Mersenne Twister

- A variation on a Two-tap generalised feedback shift register (LFG with Xor as *Op*)
- Period length is a Mersenne prime
- generates a sequence of bits.
 - sequence is grouped into blocks (32-bit)
 - these blocks are considered to be random
- Pros
 - very good statistical properties
 - very high max. period 2¹⁹⁹³⁷-1
- Cons
 - o complex to implement
 - sensitive to poor initialization

- To check the output of a pseudo-random number generator statistically
- Belong to statistical hypothesis testing
- To test the randomness of a sequence of bits
 - Frequency test
 - Serial test
 - Autocorrelation test
- To test the randomness of numbers in [0,1]
 - o Runs test
 - Chi-squared test for goodness of fit

Statistical Hypothesis Testing I

Tests validity of a hypothesis

- assertion about (measures of) a distribution of some random variables
- null hypothesis, H_0 .
- H_a alternative hypothesis, a negation of H_0 .
- In our case:
 - H_0 = "The numbers sequence produced by the generator is random"
 - H_a = "The numbers sequence produced by the generator is **not** random"

Statistical Hypothesis Testing II

Testing procedure

- 1. Collect data (sequence produced by the generator)
- 2. Run test
- 3. Accept or reject H_0 (fail to reject or reject H_0)

Errors

- Type I (false negative): H_0 is rejected but is in fact true
- Type II (false positive): H_0 is accepted but in fact is not true
 - More precisely, H_0 is failed to be rejected
- α the level of significance
 - probability of type I error
 - Usually set to 0.01 0.05
 - $c = 1 \alpha$ is level of confidence

Frequency and Serial Test

Frequency test

- o one of the most fundamental
 - if a generator fails it, it will probably fail other tests
- checks whether there is approx. the same number of occurrences of each digit
- Serial test
 - o as the frequency test but for pairs of digits

Frequency Test in Detail

- 1. Generate *m* pseudo-random numbers and concatenate them into a string of bits
- 2. Convert all "0" to "-1".
 - The resulting sequence is $X_1 X_2 X_3 \dots X_n$, $X_i \in \{-1, 1\}$
- 3. Compute $S_n = X_1 + X_2 + \dots + X_n$
- 4. Compute the test statistic S_{obs}

$$S_{obs} = \frac{|S_n|}{\sqrt{n}}$$

5. Compute the P-value as

$$erfc\left(\frac{S_{obs}}{\sqrt{2}}\right)$$

erfc = complementary error function

6. If P-value $\geq \alpha$, the sequence can be considered random (H_0 accepted)

Autocorrelation, Runs and Chi² Test

Autocorrelation test

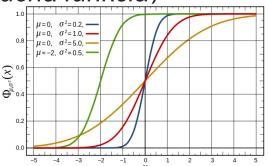
- \circ s = sequence of n bits created by a generator.
- If the sequence of bits in *s* is random, then it will be different from another bit string obtained by shifting the bits of *s* by *d* positions.
- Runs test
 - to test the assumption that the pseudo-random numbers are independent of each other (mutually independent)
 - counts of ascending and descending runs should follow a certain distribution
 - belongs to the diehard tests
- Chi-squared test for goodness of fit (Chi-kvadrát test dobrej zhody)
 - checks whether a sequence of pseudo-random numbers in [0,1] is uniformity distributed.
 - in general, it can be used to check whether an empirical distribution follows a specific theoretical distribution

Generation of Random Variates

- Random variates / stochastic variates
 - Pseudo-random numbers with other theoretical or empirical distribution as uniform in [0,1]
- = sampling from xy distribution
- Methods
 - Inverse transform sampling
 - Sampling from an empirical probability distribution
 - Rejection method

Note:: cdf & pdf of Continuous Random Variable

- cdf cumulative distribution function (distribučná funkcia)
 - $F_X(x) = F(x) = Pr(X \le x)$ for every real number x
 - X- real-valued random variable
 - Pr-probability
 - $Pr(a < X \leq b) = F_X(b) F_X(a)$



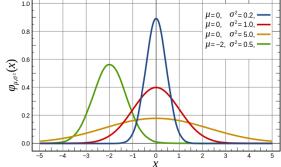
pdf - probability density function (hustota pravdepodobnosti)

•
$$f_X(x), f(x)$$

- a function that describes the relative likelihood for this random variable to have a given value.
- Probability of an exact value =0

•
$$Pr(a \le X \le b) = \int_a^b f(x) \, \mathrm{d}x$$

• cdf vs. pdf
$$F(x) = \int_{-\infty}^{x} f(u) du$$



Inverse Transform Sampling I

- Inverse transformation method
- Computationally efficient if the cdf can be analytically inverted
- Method:
 - 1. Generate a uniformly distributed random number $r, r \in [0, 1]$.
 - 2. Compute the value x such that cdf F(x) = r.
 - 3. Take *x* to be the random number drawn from the distribution described by cdf *F*.
 - $\circ \quad x = F^{-1}(r)$

Inverse Transform Sampling II

From a uniform distribution f(x) $\circ \quad \text{pdf}_{f(x)=\begin{cases} \frac{1}{b-a} & \text{for } x \in [a, b] \\ 0 & \text{otherwise} \end{cases} }$ $\begin{array}{c} \circ \quad \operatorname{cdf} \\ F(x) = \begin{cases} 0 & \text{for } x \leq a \\ \frac{x-a}{b-a} & \text{for } x \in [a,b] \\ 1 & \text{for } x \geq b \end{cases}$ а $\circ x = a + (b - a)r$

a

0

h

X

X

>kpi

1.4

1.2

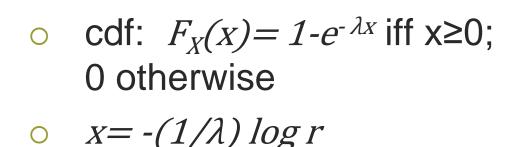
1.0 3 0.8 0.6 0.4 0.2 0.0

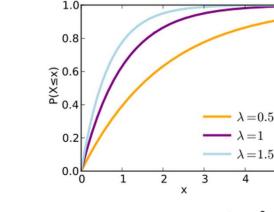
1

Inverse Transform Sampling III

From an exponential distribution

• pdf: $f_X(x) = \lambda e^{-\lambda x}$, a>0, x≥0





 $\lambda = 0.5$

 $\lambda = 1.5$

 $\lambda = 1$

Inverse Transform Sampling IV

- From a geometric distribution
 - a discrete distribution

variable *n* = 0,1,2,...

- discrete analog of the exponential distribution
- pdf: $p(n)=p(1-p)^n = pq^n$; p+q=1, 0
- $\operatorname{cdf} F(n) = 1 q^{n+1}$
- $n = (\log r / \log q) 1$

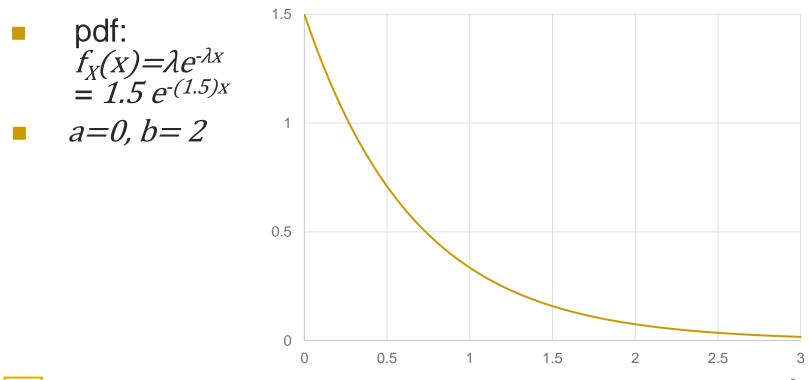
Rejection Method

- Prerequisites
 - f(x) (pdf) is bounded
 - x has a finite range, i.e. $a \le x \le b$
 - Algorithm
 - 1. Normalize the range of f(x) by a scale factor c so that $cf(x) \le 1$ and $a \le x \le b$.
 - 2. Define *x* as a linear function of *r*, i.e. x = a + (b-a)r, where *r* is a random number.
 - 3. Generate pairs of pseudo-random numbers (r_1, r_2) .
 - 4. Accept the pair and use $x = a + (b-a)r_1$ as a random variate whenever the pair satisfies $r_2 \le cf(a + (b-a)r_1)$.

pdf

Rejection Method::Example

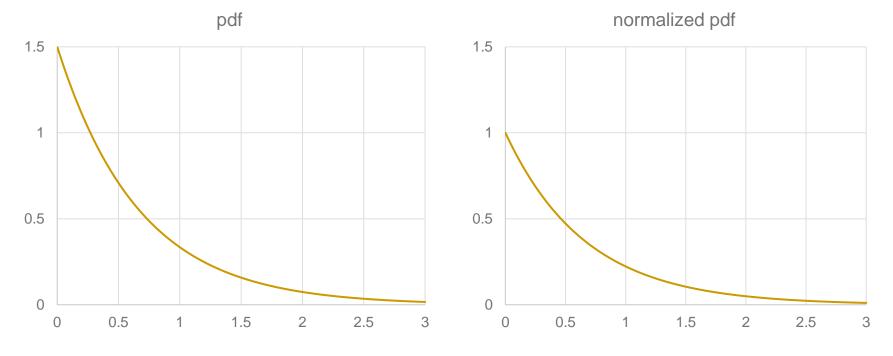
Task: generate a random variate x, $0 \le x \le 2$ from exponential distribution with $\lambda = 1.5$



KD

Rejection Method::Example

- Task: generate a random variate x, $0 \le x \le 2$ from exponential distribution with $\lambda = 1.5$
- Normalisation needed: c= 2/3



KD

Rejection Method::Example

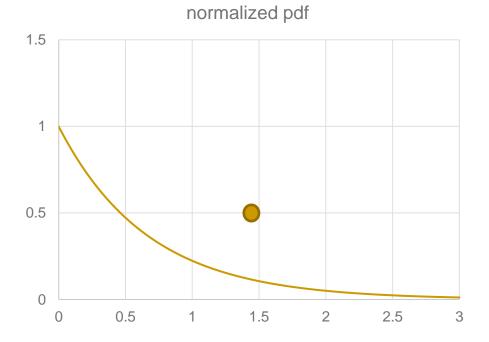
- Task: generate a random variate x, $\theta \le x \le 2$ from exponential distribution with $\lambda = 1.5$
- Generated pair:

•
$$r_1 = 0.7$$

• $r_2 = 0.5$

$$r_2 = 0.5$$

- $cf(a + (b-a)r_1)$ $=(2/3)\tilde{f}(0+(2-\tilde{0})0.7)$ $= (2/3) \tilde{f}(1.4)$ =(2/3) 0.183684642=0.122456428
- 0.5 > 0.122456428 The pair is rejected



KD

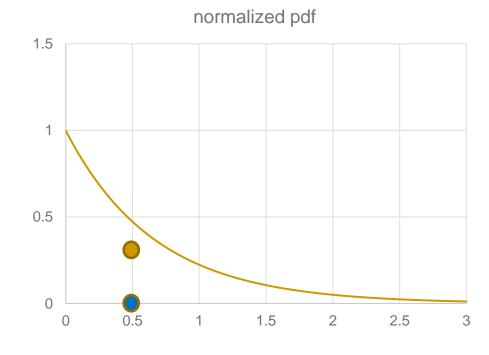
Rejection Method::Example

- Task: generate a random variate x, $0 \le x \le 2$ from exponential distribution with $\lambda = 1.5$
- Generated pair:

•
$$r_1 = 0.25$$

•
$$r_2 = 0.3$$

 $cf(a + (b-a)r_1) = (2/3)f(0+(2-0)0.25) = (2/3) f(0.5) = (2/3) 0.708549829 = 0.472366553$



- 0.3 ≤ 0.472366553
 - *The pair is accepted, x= a + (b-a)r₁=0.5*

Modelling and Simulation :: Pseudo-random numbers

Monte Carlo Integration

- Using rejection method
- Task: compute $\int_a^b f(x) dx$
- Prerequisites: f(x) is bounded at [a,b]

Monte Carlo Integration

- Algorithm
 - for a simplified case: $f(x) \ge 0$ at [a,b]
 - max maximum of f(x) at [a,b]
 - N natural number, N>0
- 1. Let i=0, n=0
- 2. Generate a pair of pseudo-random numbers
 - uniformly distributed
 - r_1 -from a to b
 - r_2 -from 0 to max
- 3. if $r_2 < f(r_1)$ then n=n+1
- **4**. *i*=*i*+1
- 5. If *i*<*N*, go to step 2
- 6. If *i=N*, return (n/N)(b-a)max

Monte Carlo Integr.::Example

Compute
$$\int_{0}^{2} 2x \, dx$$

• Can be computed analytically:
 $\int_{0}^{2} 2x \, dx = [x^{2}]_{0}^{4} = 2^{2} - 0^{2} = 4$
• a=0, b=2, max=4

2

y = 2x

