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Random Numbers & Variates I

◼ Purpose (examples)

 numerical analysis
◼ solving of complicated integrals

 cryptography
◼ key generation & confirmation

 Software development
◼ generation of testing data

 Simulation
◼ as a source of randomness in the model
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Random Numbers & Variates II

◼ We mean sequences of (pseudo-)random 
numbers

◼ True random numbers
 generated by completely unpredictable and non-

reproducible source

 Physical phenomenon used as generators
◼ radioactive source

◼ thermal noise from a resistor or a semi-conductor 
diode

◼ human computer interaction processes (i.e. mouse or 
keyboard use)

◼ …
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Random Numbers & Variates III

◼ Pseudo-random numbers
 Generated by algorithms

 Generated in a deterministic way
◼ Reproducible: by using the same starting value (seed) 

we get the same sequence

 Uniformly distributed in the space [0,1]

◼ Random variates
 = stochastic variates

 Pseudo-random numbers with other theoretical 
or empirical distribution as uniform in [0,1]
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Random Numbers Generators

◼ Criteria for pseudo-random numbers generator output
 uniformly distributed

 statistically independent

 reproducible

 non-repeating for any desired length

◼ Numbers generated on demand
 usually one by one

◼ Generators
 Mid-square

 Congruential

 Tausworthe

 Lagged Fibonacci

 Mercenne Twister

 …



Modelling and Simulation :: Pseudo-random numbers Š.Korečko, 2023 :: p. 7

Mid-square

◼ (metóda stredu mocniny)

◼ Oldest

◼ By John von Neumann

◼ Number generation:
1. Take the square of previously generated number

2. Extract the middle digits

◼ Not recommended
 slow

 (very) short period

◼ Period
 = number of successively generated pseudo-random 

numbers after which the sequence starts repeating itself

Pseudo-random Numbers Generators
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Congruential methods I

◼ General formula

xi+1 = (f(xi,xi-1,…)) mod m
 has a full period if the period = m

◼ Quadratic congruential generator

xi+1 = (a1xi
2 + a2xi-1+c) mod m

◼ Linear congruential generator

xi+1 = (axi +c) mod m

Pseudo-random Numbers Generators
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Congruential methods II

◼ Linear c. g.   xi+1 = (axi +c) mod m
 generates numbers between 0 and m-1

 simple & fast

 pseudo-random numbers statistically 
acceptable for computer simulation

 Period is full (i.e. =m) when
◼ m, c have no common divisor

◼ a-1 is divisible by all prime factors of m
◼ a-1 is a multiple of 4 if m is a multiple of 4

 Optimisation: setting m to size of used register
◼ mod = overflow

Pseudo-random Numbers Generators
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Congruential methods III

◼ Composite generators
 Two separate generators (usually congruential) 

combined

 Has good statistical properties, even if the 
generators used are bad

 Example:
1. Generate a sequence  x1, ..., xk using G1 

2. Generate an integer r, r 1,…, k using G2 

3. Return xr

4. Generate a new xr using G1 
 Generate a new number by G1 and replace xr with it

5. Go to step 2

Pseudo-random Numbers Generators
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Lagged Fibonacci Generators

◼ =LFG (Oneskorené Fibonacciho generátory )

◼ Based on the Fibonacci sequence
 xn = xn-1+xn-2 x0 = 0, x1 = 1

◼ General form
 xn = (xn-j Op xn-k) mod m 0<j<k

 Op = algebraic operation ( + - * …)

◼ Pros
 very good statistical properties

 only a bit less efficient than congruential

 can be parallelized

◼ Cons
 highly sensitive on the seed

◼ Commonly used versions for Op = + ; m=2M

 j=5, k=17, M=31

 j=24, k=55, M=31

Pseudo-random Numbers Generators
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Mersenne Twister

◼ A variation on a Two-tap generalised feedback 
shift register (LFG with Xor as Op)

◼ Period length is a Mersenne prime

◼ generates a sequence of bits. 
 sequence is grouped into blocks (32-bit)

 these blocks are considered to be random

◼ Pros
 very good statistical properties

 very high max. period 219937-1

◼ Cons
 complex to implement

 sensitive to poor initialization

Pseudo-random Numbers Generators
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Statistical Tests for Generators

◼ To check the output of a pseudo-random number 
generator statistically

◼ Belong to statistical hypothesis testing

◼ To test the randomness of a sequence of bits
 Frequency test

 Serial test

 Autocorrelation test

◼ To test the randomness of numbers in [0,1]
 Runs test

 Chi-squared test for goodness of fit
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Statistical Hypothesis Testing I

◼ Tests validity of a hypothesis
 assertion about (measures of) a distribution of some 

random variables

 null hypothesis, H0.

◼ Ha - alternative hypothesis, a negation of H0.

◼ In our case: 
 H0 = “The numbers sequence produced by the generator 

is random”

 Ha = “The numbers sequence produced by the generator 
is not random”

Statistical Tests for Generators
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Statistical Hypothesis Testing II

◼ Testing procedure
1. Collect data (sequence produced by the generator)

2. Run test

3. Accept or reject H0 (fail to reject or reject H0)

◼ Errors
 Type I (false negative): H0 is rejected but is in fact true

 Type II (false positive): H0 is accepted but in fact is not true
◼ More precisely, H0 is failed to be rejected 

◼ α - the level of significance
 probability of type I error

 Usually set to 0.01 – 0.05

 c = 1- α is level of confidence

Statistical Tests for Generators
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Frequency and Serial Test

◼ Frequency test
 one of the most fundamental

◼ if a generator fails it, it will probably fail other tests

 checks whether there is approx. the same number of 
occurrences of each digit

◼ Serial test
 as the frequency test but for pairs of digits

Statistical Tests for Generators
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Frequency Test in Detail

1. Generate m pseudo-random numbers and concatenate them 
into a string of bits

2. Convert all “0” to “-1”.

 The resulting sequence is X1 X2 X3 …Xn, Xi {-1,1}

3. Compute 𝑆𝑛 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛

4. Compute the test statistic 𝑆𝑜𝑏𝑠

𝑆𝑜𝑏𝑠 =
𝑆𝑛

𝑛
5. Compute the P-value as

𝑒𝑟𝑓𝑐
𝑆𝑜𝑏𝑠

2
6. If P-value ≥ α, the sequence can be considered random (H0 

accepted)

Statistical Tests for Generators

erfc = complementary 

error function
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Autocorrelation, Runs and Chi2 Test

◼ Autocorrelation test
 s = sequence of n bits created by a generator. 

 If the sequence of bits in s is random, then it will be different from 
another bit string obtained by shifting the bits of s by d positions.

◼ Runs test
 to test the assumption that the pseudo-random numbers are 

independent of each other (mutually independent)

 counts of ascending and descending runs should follow a certain 
distribution

 belongs to the diehard tests

◼ Chi-squared test for goodness of fit (Chi-kvadrát test dobrej 
zhody)
 checks whether a sequence of pseudo-random numbers in [0,1] 

is uniformity distributed.

 in general, it can be used to check whether an empirical 
distribution follows a specific theoretical distribution

Statistical Tests for Generators
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Generation of Random Variates

◼ Random variates / stochastic variates

 Pseudo-random numbers with other theoretical 

or empirical distribution as uniform in [0,1]

◼ = sampling from xy distribution

◼ Methods

 Inverse transform sampling

 Sampling from an empirical probability 

distribution

 Rejection method
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Note:: cdf & pdf of Continuous

Random Variable
◼ cdf - cumulative distribution function (distribučná funkcia)

 FX (x) =F(x) = Pr(X≤x) for every real number x
 X - real-valued random variable

 Pr – probability

 Pr(a<X≤b)= FX(b)- FX(a)

◼ pdf - probability density function (hustota pravdepodobnosti)
 fX(x), f(x) 
 a function that describes the relative likelihood for 

this random variable to have a given value.

 Probability of an exact value =0

 Pr(a ≤ X≤b)= 

◼ cdf vs. pdf
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Inverse Transform Sampling I

◼ = Inverse transformation method

◼ Computationally efficient if the cdf can be 
analytically inverted

◼ Method:
1. Generate a uniformly distributed random 

number r, r  [0,1].

2. Compute the value x such that cdf F(x) = r.

3. Take x to be the random number drawn from 
the distribution described by cdf F.

 x = F-1(r) 

Random Variates Generation
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Inverse Transform Sampling II

◼ From a uniform distribution

 pdf

 cdf

 x= a+(b-a)r

Random Variates Generation

f(x)=

F(x)=
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Inverse Transform Sampling III

◼ From an exponential distribution

 pdf: fX(x)=λe-λx, a>0, x≥0

 cdf: FX(x)= 1-e- λx iff x≥0; 

0 otherwise

 x= -(1/λ) log r

Random Variates Generation
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Inverse Transform Sampling IV

◼ From a geometric distribution

 a discrete distribution

◼ variable n = 0,1,2,…

 discrete analog of the exponential 

distribution

 pdf: p(n)=p(1-p)n = pqn;  p+q=1, 0<p<1

 cdf F(n)=1-qn+1

 n=(log r / log q) -1

Random Variates Generation
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Rejection Method

◼ Prerequisites
 f(x) (pdf) is bounded

 x has a finite range, i.e. a≤x≤b

◼ Algorithm

1. Normalize the range of f(x) by a scale factor c so 
that cf(x) ≤ 1 and a ≤ x ≤ b.

2. Define x as a linear function of r, i.e. 
x = a + (b-a)r, where r is a random number.

3. Generate pairs of pseudo-random numbers(r1, r2).

4. Accept the pair and use 
x = a + (b-a)r1 
as a random variate whenever the pair satisfies 
r2 ≤ cf(a + (b-a)r1).

Random Variates Generation
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Rejection Method::Example 

◼ Task: generate a random variate x, 0≤x≤2 from 
exponential distribution with λ = 1.5

◼ pdf:
fX(x)=λe-λx  

= 1.5 e-(1.5)x

◼ a=0, b= 2

Random Variates Generation

0

0.5
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Rejection Method::Example 

◼ Task: generate a random variate x, 0≤x≤2 from 
exponential distribution with λ = 1.5

◼ Normalisation needed: c= 2/3

Random Variates Generation
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Rejection Method::Example 

◼ Task: generate a random variate x, 0≤x≤2 from 
exponential distribution with λ = 1.5

◼ Generated pair:
 r1 = 0.7
 r2 =  0.5

◼ cf(a + (b-a)r1)
=(2/3)f(0+(2-0)0.7)
=(2/3) f(1.4)
=(2/3) 0.183684642
=0.122456428

◼ 0.5 > 0.122456428
◼ The pair  is rejected

Random Variates Generation
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Rejection Method::Example 

◼ Task: generate a random variate x, 0≤x≤2 from 
exponential distribution with λ = 1.5

◼ Generated pair:
 r1 = 0.25
 r2 =  0.3

◼ cf(a + (b-a)r1)
=(2/3)f(0+(2-0)0.25)
=(2/3) f(0.5)
=(2/3) 0.708549829
=0.472366553

◼ 0.3 ≤ 0.472366553
◼ The pair  is accepted, x= a + (b-a)r1 =0.5

Random Variates Generation
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Monte Carlo Integration

◼ Using rejection method

◼ Task: compute 𝑎

𝑏
𝑓 𝑥 𝑑𝑥

◼ Prerequisites: 𝑓 𝑥 is bounded at [a,b]

Random Variates Generation
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Monte Carlo Integration

◼ Algorithm
 for a simplified case: f(x)≥ 0 at [a,b]

 max – maximum of f(x) at [a,b]

 N – natural number, N>0

1. Let i=0, n=0

2. Generate a pair of pseudo-random numbers
 uniformly distributed

 r1-from a to b

 r2-from 0 to max

3. if r2 < f(r1) then n=n+1

4. i=i+1

5. If i<N, go to step 2

6. If i=N, return (n/N)(b-a)max

Random Variates Generation
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Monte Carlo Integr.::Example

◼ Compute 0

2
2𝑥 𝑑𝑥

 Can be computed analytically:

0

2
2𝑥 𝑑𝑥 = 𝑥2

0
4 = 22 − 02 = 4

 a=0, b=2, max=4

Random Variates Generation

𝒚 = 𝟐𝒙 

0              2

4
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