Modelling & Simulation Queuing Systems

Štefan Korečko

Department of Computers and Informatics Faculty of Electrical Engineering and Informatics Technical University of Košice Slovak Republic

stefan.korecko@tuke.sk

2023

Contents

- Queuing System
- Kendall Classification
- Performance Measures

Queuing System I

- Systém hromadnej obsluhy
- Single queue queuing system:

- Population of customers
 - limited (closed systems)
 - unlimited (open systems)
 - theoretical model of systems with a large number of possible customers
 - customers = people, processes, machines...

- Arrival (vstupný prúd požiadaviek)
 - defines the way customers enter the system
 - mostly random
 - random intervals between two adjacent arrivals.
 - o Arrival pattern (charakteristika vst. prúdu)
 - random distribution of intervals

- Queue (front)
 - customers waiting for service
 - Maximum queue size
 - the maximum number of customers that may wait in the queue
 - + customers being served = system capacity
 - some theoretical models assume an unlimited length
 - Queuing Discipline
 - the way the queue is organised
 - FIFO, LIFO, SIRO (Serve In Random Order), Priority Queue, …

Queuing System IV

- Service (uzol obsluhy)
 - an activity customers are waiting for
 - has some duration
 - typically random
 - Service pattern (charakteristika uzla obsluhy)
 - random distribution of service duration
 - Number of servers
 - Single Channel Systems one server
 - Multi Channel Systems more servers
- Output (výstupný prúd)
 - the way customers leave the system
 - mostly ignored by theoretical models

Kendall Classification I

- several modifications
- A/B/s/q/c/p
 - **A** = arrival pattern
 - **B** = service pattern
 - **s** = number of servers
 - **q** = queuing discipline
 - *c* = system capacity
 - *p* = population size = number of possible customers

Kendall Classification II

A/B/s/q/c/p

- **A** = arrival pattern
- **B** = service pattern

Common values for A & B

- M Poisson arrival distribution (exponential interarrival distribution) or an exponential service time distribution
- E_m Erlang distribution
- D deterministic or constant value
- G general distribution with a known mean and variance
- M/M/1
 - Poisson arrival distribution, exponential service time distribution, single channel, unlimited FIFO or unspecified queue, unlimited customer population

Performance Measures I

Performance Measures

- average waiting time
- expected number of customers
 - waiting
 - receiving service
- probability of
 - empty system
 - full system
 - having an available server
 - having to wait a certain time to be served

Performance Measures II

- How to obtain performance measures?
 - o analytically
 - using Queuing theory
 - only for limited number of system types
 - o M/M/1
 - by simulation

