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Input-output modelling |

t - time (variable) ty <t < t¢

u - input variables {u, (t), ..., u,(t)}

o u) =|u @), ...,up(t)]T (vector form)

y - output variables {y,(t), ..., v, (t)}
o y@®) = (@®), ...,y (O]
o  suppressed output variables
= not associated with either the input or the output
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Input-output modelling Il

| t()StStf

s 100 = [ug(6), e uy ()]
= y(© =@, ., ym(©]"

g - function, defining mathematical relationship between the input
and output

y() = g(®) = [g1 (w1 (@), ..., up(®)) oo g (U1 (8), .., up, ()T
yi(®) = gi (Wi (), ., up (©))

o ingeneral, g can explicitly depend on t: y(t) = g(u(t),t)
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Input-output model example

. o i

Current divider circuit — = ]

From Kirchhoff's current law: — 1 g 7 R
V VT, VIR,

O l - il -+ iz

From Ohm's law:

.V . %4
O ll_R_li Ly

Input-output model:

. Ry+R
o w(@)=R, y®)=i=V-—-"=

R1R;
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State space modelling |

State of a system at time ¢,

o the information required at t, such that y(t), for
all t > t,, Is uniquely determined from this
information and from the input u(t),t = t,.

o x - vector of state variables

x(t) = [x1(0), .., xn (O]"

X — State space of a system

o the set of all possible values that the state may
take.
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State space modelling Il

State eqguations

o the set of equations required to specify the state

x(t) for all t > t, given x(t,) and the function
u(t), t = t,.

o usually differential equations of the form

X(t) = f(X(),u(t),t)
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[State space modelling Il ]

= State space model ‘E

x() = f(Z(©),u(D), t)
x(ty) = xg
y() = g(x(t), u(t),t)

o n state equations and initial conditions (1 < i < n):
% (8) = f;i(%1(©), e, 2 (0), ug (©), oo, up (), 1),

x;(to) = xio

O m output equations (1 <j < m):
;i (®) = g; (21 (), e, 20 (), U1 (B), .., uy (0), 1)
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State space model example

Spring-mass system

o asimple harmonic oscillator
Hooke's law

o F=-kyormy=-—ky
Initial conditions

o y(0) =uy, y(0)=0

State space model (x;(t) instead of y)
o Xq1(t) = x(t)

0 X(t) = —xy (b)

o x1(0) =uy, x,(0)=0

o y(t) =x.(t)
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Note :: Derivative |

a measure of how a function changes as its
Input changes

differentiation
o process of finding a derivative of a function

antidifferentiation
o = Integration
o reverse of differentiation
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Note :: Derivative ||

derivative of a real function of a single variable (at a point)
o  slope of the tangent line to the graph of the function (at the point)

YA

TN T

)

X
slope (gradient) of a line (smernica dotycnice)

o = number that describes both the direction and the steepness of the line
o usually denoted as m

Ay _ Y2=)1
Ax Xo—Xq

m = = tan (@)
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Note :: Derivative Il

Notations for derivative of y= f(x)
o Lagrange's f' f"f" f®

. ., Oy df d d'y d"f dr
g = —(x) — f
o Leibniz's (X) » (X) el (x) ™ f(x)
o Euler's Dy D, f(x) D"y D, f(x)
o Newton's y y
for time derivatives y = f (t)
Definition
, . f(a+h)-f(a t+17)— f(t
Fa)=lm ( r), = Y(t):lir%f( Tz f©)
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Taxonomy of models and systems

‘ Systems ‘

~ Static Dynamic

Time-varying \ Time-invariant

Linear | |Nonlinear

Continuous-state| |Discrete-state discrete
' event
Time-driven | | Event-driven systems

Hierarchy to discrete event systems 'Deterministic| | Stochastic

Source:
Cassandras, Ch. G. & Lafortune, S.:

Introduction to Discrete Event Systems,
second edition, Springer, 2008

Discrete-time |

Continuous-time
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[Static and Dynamic Systems

Systems ‘

Static ~ Static Dynamic |

o for all t the output y(t) doesn't depend on
past values of the input u(t,), t, < t.

o the state is fixed fc(t) =0
Dynamic

o the output depends on some past values
of the input.
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Time-varying and Time-
[invariant Systems

Dynamic

Time-varying | Time-invariant

Time-invariant

o the output is always the same when the same
Input is applied

x(t) = f(2(0), u(0))
y(t) = g(x(6), u(®))
Time-varying
o explicit time dependence
x(t) = fX(®), u(t),
y(t) = gx(0),u(t),t)
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Linear and non-linear systems

Dynamic

Linear: f and g are linear

Nonlinear: f or g is not linear Linear Nonlinear

The function g is linear if it satisfies the
superposition principle
g(a1u; + axuy) = a1g(Uuy) +axg(uy)

the state model of a linear system
X(t) = A@®)F(t) + B(1)u(t)
y(t) = C(t)x(t) + D)u(t)
o A(t) is an n X n matrix, B(t) is an n X p matrix, C(t) is an
m X n matrix and D(t) is an m X p matrix.

Modelling and Simulation :: Hierarchical Taxonomy S.Koregko, 2023 :: p. 16 ) kpi



Linear system example

x(t) = A(D)X(t) + B)u(t)

Spring — mass system y(£) = COx(2) + D(O)U()

X1 (t) = x,(t) %, U ) ok 1

50 = (0 [x'J:[—f o] ) A== o] P70

y(©) = (1) y=11 o] C=[1 0, D=0,
(O) = , xl(o)] — Ug

oty o) 15]
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Nonlinear system example

A
Flow system — %\A

uy (t) = fl;(¢)
up(t) = flo(t)

A
Cp
x (t)
vy

y1(t) = x1(¢)

| ()
%1(0) = 0 Ay
[0 (1 () = 0 AfL() < flo()) V
X, (t) = 4 V (x1(t) =Cp AfLi(t) = fl,(t))
\ﬂi(t) — fl,(t) otherwise
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Continuous and Discrete-State

Dynamic

: Continuous-state Discrete-state

Continuous-State

o state variables can generally take on any real (or complex)
value

Discrete-State

o state variables are elements of a discrete set (e.g., the
non-negative integers)

Modelling and Simulation :: Hierarchical Taxonomy S.Koregko, 2023 :: p. 19 ) I(pi



Discrete-state system example

Doctor’s waiting room |
patients waltlng patient

patient called by
arrival | __ doctor
u (1 0 (0

1 if avpatient arrives at time t
uq(t) = { fap

0 otherwise
_ (1 if apatient is called at time t
uy(t) =

0 otherwise

x(t) +1 u(t)=1Au,(t) =0
x(t+1D)=4x®) -1 wu(®)=0Au(t) =1Ax(t)>0
x(t) otherwise
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Continuous and discrete-time

Continuous-time

o all input, state, and output variables are defined for all
possible values of time

Discrete-time

o one or more of these variables are defined at discrete
points in time only (usually as the result of some sampling
process)

o timeis a discrete variable

each real system is a continuous-time system
o Inputs and outputs can be observed at any time instant
o their models can be discrete-time

Modelling and Simulation :: Hierarchical Taxonomy S.Koregko, 2023 :: p. 21 ) kpi



Discrete-time systems |

Good for models

o where output and state variables can change only at
exactly defined time instants
digital circuits

o based on a finite set of data, recorded at certain time
moments

a model is discrete-time because we cannot construct a continuous-
time one

Continuous-time systems become de-facto
discrete-time systems when simulated on digital
computers
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Discrete-time systems ||

Time = sequence of time values t,, t, ..., ty, ...,
o Vi(i=20):t; <t;4q
T —sampling interval Vi(i = 0):t;; = t; + T
State space model uses difference equations
x(k +1) = f(&(k), uk), k)
x(0) = x
y(k) = g(x(k), uk), k)

k — integer variable, replaces t

o number of intervals of the length T that passed since the
Initial time point ¢,
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Time-driven vs. Event-driven

| Discrete-state

Time-driven ‘ Event-driven

Time-driven
o state continuously changes as time changes
o time advance causes state change

Event-driven

o only an occurrence of an asynchronously generated
discrete event forces instantaneous state transition.

O event occurrence causes state change
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Stochastic vs. Deterministic

Dynamic

Deterministic ‘ Stochastic

Stochastic
o one or more of its output variables is a random variable

Deterministic
o no random variable
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Discrete Event Systems

Discrete-state

Event-driven

Deterministic Stochastic

Discrete-time Discrete-time

Continuous-time

Continuous-time
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