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I Introduction 
The discipline of Modelling and Simulation deals with processes that utilize models of systems to 

study properties of the systems. This involves observing behaviour of a real system, creation of an 

appropriate model, checking whether the model corresponds to the original, performing 

experiments with the model and analysing results of these experiments. Before we go deeper into 

these processes we define basic terms, namely system, model, modelling and simulation. We will 

also deal with advantages and disadvantages of simulation, cases when it is appropriate to use 

simulation, tasks related to modelling and simulation and a typical course of a simulation study. This 

chapter is written primarily on the basis of (Banks et al., 1998), (Banks et al., 2001), (Cassandras & 

Lafortune, 2008), (Křivý & Kindler, 2001) and lectures from Modelling and Simulation as taught by 

assoc. prof. Milan Šujanský at the home institution of the author. 

Chapter II gives an overview of different types of systems and corresponding mathematical models 

and the rest of the book deals with modelling and simulation of particular types of discrete-state 

systems. Chapter III briefly describes modelling and simulation of digital circuits and chapters IV to VI 

are dedicated to discrete event systems (DES). Chapter IV introduces random numbers and their 

generators, which are necessary for stochastic DES and chapter V overviews a frequently used and 

well-researched class of DES, called queuing systems. Chapter VI deals with timed Coloured Petri nets 

(tCPN), a formal language suitable for modelling and simulation of DES. It also contains a complete 

simulation study conducted using tCPN. Modelling and simulation of continuous-state systems are 

not treated here, an interested reader can find exhaustive information about it in (Cellier. & 

Greifeneder, 1991)  and (Cellier & Kofman, 2006) or in (Neuschl et al, 1988). 

I.1 System 
The modelling and simulation is about systems, so we should fix the meaning of this word first. The 

word system is understood in many different ways, depending on the specific area of human activity 

or scientific discipline where it is used. Here are some definitions of the term from well-known 

dictionaries and encyclopaedia: 

 An aggregation or assemblage of things so combined by nature or man as to form an integral 

or complex whole (Encyclopedia Americana). 

 A group of related parts that move or work together (Merriam-Webster). 

 A set of things working together as parts of a mechanism or an interconnecting network; a 

complex whole (Oxford Dictionary). 

 A combination of components that act together to perform a function not possible with any 

of the individual parts (IEEE Standard Dictionary of Electrical and Electronic Terms). 

Other famous encyclopaedia, the Encyclopaedia Britannica doesn’t even define the word system in 

general, but talks only about different types of systems. Each of the definitions is different, but there 

are some common features: all of them identify a system as a whole, composed of parts working 

together. On the basis of this we will fix the meaning of a system as follows: 

A system is an organized, purposeful structure regarded as a whole and consisting of interconnected 

elements, which exists and operates in time and space through the interaction of the elements. 
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The elements can be named in many ways, such as components, entities, factors, members or parts. 

The elements are regarded basic parts, which cannot be divided. Usually we can identify groups of 

elements in a system that have common properties and can be described separately. These are 

called subsystems.  

Basic characteristics, or properties, of a system are: 

 Its elements are interrelated and interdependent. 

 It displays properties not possessed by any of the individual elements. 

 It is definable. The boundary between a system and its environment has to be clearly and 

unambiguously defined. 

 We can rarely think about a system as something that is totally isolated from its surroundings and in 

the modelling and simulation we usually have to take the surroundings into account. We call it an 

environment of the system and it is defined as a set of elements outside the system. A set of 

environment elements related to the system forms its significant environment, which is also called 

system environment. Interaction between a system and its significant environment is usually defined 

by inputs and outputs of the system. 

System configuration is defined by number of elements, type of elements and relations 

(interconnections) between them. It represents qualitative system characteristics. System 

parameters are quantitative system characteristics and system structure is defined by both system 

configuration and parameters. 

Realization of system properties in time and space defines its behaviour. The behaviour of a system 

is observed as a dependency of system outputs on system inputs. 

I.2 Modelling 
Modelling is a process of producing a model and a model is a representation of the construction 

(structure) and working (behaviour) of a system of interest. It is similar to but simpler than the 

original system. A good model is a judicious trade-off between realism and simplicity. Every model is, 

naturally, also a system. Relation between a system and its model is that of similarity and we can 

have two kinds of similarities. 

 Similarity in structure. This means that a model is composed of elements with the same or 

similar parameters as those in the original system and similar interconnections. This 

similarity doesn’t have to be 1:1 correspondence; an element of a model can represent a 

subsystem in the original system. 

 Similarity in behaviour. Systems similar in behaviour respond to the same inputs with similar 

outputs. 

Similarity in structure in most cases implies similarity in behaviour but systems similar in behaviour 

often have very different structure. 

We distinguish three basic types of models: 

 Physical model is a smaller or larger physical copy of an object, usually similar in 

structure and in behaviour to the original. For example a diesel locomotive is a system and its 
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model for model railway is its physical model. They are similar in behaviour and also in 

structure, but only to some extent (i.e. the engine of original is different from the model). 

 Mathematical model describes behaviour of the original by means of a mathematical 

apparatus. It can be used for formal analysis (analytical computations) or creation of a 

simulation model of the original. This type of model is also called conceptual model. The term 

conceptual model is also used in cases when such a model is not fully formalised, for 

example some parts are described by natural language and not by a mathematical apparatus. 

 Simulation model is the mathematical (or conceptual) model transformed to an 

executable program. They are similar to the original in behaviour. 

In principal, it is always possible to construct a model of a real system. The opposite, however, is 

not true as we can have mathematical models of systems that are not physically realisable. We 

call them abstract systems. 

I.3 Simulation 
The word simulation can be defined as a manipulation of a model in such a way that it operates in 

time or space. What is very important, the purpose of the manipulation should be to study 

properties of the original system (provided that it exists). Because a model is similar to it, we can 

experiment with the model and apply results to the original. It is not necessary to use computers for 

simulation; it can be also done on paper or using physical models. But simulation on computers is the 

most popular nowadays and we will deal exclusively with this kind of simulation in the rest of the 

book. 

Simulation can have various goals and in general we distinguish four types of simulation tasks: 

 System analysis. The original system exists and its mathematical model is known. The task is 

to create a simulation model and perform experiments on it. Aim of the experiments can be, 

for example, optimization of performance of the system. 

 System synthesis. A mathematical model exists, simulation model is created from it, 

simulated and results analysed. After a suitable simulation model is created a real system is 

constructed on its basis. This process usually involves several modifications of the simulation 

model and repeated analysis. 

 System identification. The original exists; a task is to find its mathematical model. The 

extreme case here is so-called "black box problem“, where we can control inputs and read 

outputs and we have to determine the mathematical relationship between the inputs and 

outputs. 

 System simulator. Here a part of the system is in its original form and another part 

is a simulation model. The task is to interconnect them. An example of such system is a flight 

trainer. 

To perform simulation on digital computers, simulation systems are used. A simulation system 

usually consists of a simulation program and a simulation language. A simulation language is used to 

describe simulation models and simulation experiments and a simulation program is software for 

creating simulation models and defining and performing simulation experiments. In some cases a 

simulation model is directly programmed in some general-purpose programming language (gppl). 

Then the corresponding gppl serves as a simulation language.  
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A concrete case of simulation and modelling is called simulation study. Each study consists of several 

steps, which, according to (Banks et al., 2001), are as follows: 

1. Problem formulation. The problem, which the study should solve, is defined. It is also 

necessary to ensure that the problem is understood in the same way by those that have it 

(i.e. client) and by those who will solve it (i.e. simulation analyst). 

2. Setting of objectives and overall project plan. This step starts by defining objectives of the 

study; that is questions the study should answer. After they are specified, it should be 

determined whether the simulation is an appropriate technique. If yes, the project plan is 

prepared. The plan includes statements about systems and their modifications to be 

considered and modelled, a method for evaluating them, number of people involved, 

estimated cost of the study and duration and anticipated results of its phases. 

3. Model conceptualization. Creation of mathematical or conceptual model of the system. The 

crucial decision here is about a level of detail that will be captured in the model. On the basis 

of this we can select appropriate mathematical apparatus. Here it is also decided what 

parameters of the system will be considered fixed, what will constitute (adjustable) input and 

what (measurable) output of the model. Unfortunately, there is no universal set of 

instructions to be followed when constructing a model, but it is advised to start with a 

simple, very abstract, model and refine it step-by-step by adding more and more details until 

the requested level is reached. It is also recommended to involve the model user in this 

phase. 

4. Data collection. Collecting of data about the original system, about its inputs and outputs. 

The data should cover all situations under which the original system operates that are 

important for the study. The data are not only important for building of the model but also 

for its validation. This phase usually occurs simultaneously with the model conceptualization.  

5. Model translation. Creation (programming) of a simulation model of the system on the basis 

of the conceptual model.  

6. Verification. Checking whether the simulation model corresponds to the mathematical or 

conceptual one. 

7. Validation. Determination that a model is an accurate representation of the original system. 

Simulated behaviour of the model is compared to behaviour of the original system. 

8. Simulation experiments and analysis of results. Simulation experiments are prepared and run 

(so-called simulation runs), results are analysed and answers to the project objectives are 

formulated on their basis. 

9. Documentation and reporting. In (Banks et al., 2001) two types of documentation are 

identified: program and progress. The program documentation describes simulation models 

in a way similar to the standard software documentation. The progress documentation is a 

recorded history of simulation experiments. A final report contains analysis results that 

should clearly answer the project objectives. 

10. Implementation. Implementation of the study results to the original system. 

The steps described fit primarily the system analysis type of simulation study, for other types they 

need to be modified accordingly. For example, the model conceptualization step is reduced and the 

validation step is absent in the case of the system synthesis.   
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As the second step indicates, it is not always appropriate to use simulation. According to (Banks et 

al., 2001) the simulation should be avoided if 

1. The problem in question can be solved analytically. Analytically means that we can use some 

mathematical apparatus, for example differential calculus or trigonometry, to solve the 

problem in general - that is for any circumstances. This also includes situations when some 

simple mathematical computation, based on the common sense, is satisfactory. 

2. It is easier to perform direct experiments. This is, for example, the case when experimenting 

with the original system doesn’t significantly interrupt or influence its normal operation. Or 

there is enough time to adopt and test changes when the system is not used. 

3. Too expensive. If the costs of corresponding simulation study exceed savings that will come 

from implementation of study results (if positive). 

4. Resource and time is not available. Limited time or access to data about the system to be 

modelled cause that a true-to-original model cannot be constructed. 

Before ending this section we summarize advantages and disadvantages of simulation, again 

according to (Banks et al., 2001). The advantages are 

 Modifications of a system, including new policies, operating procedures and decision rules, 

can be evaluated without disrupting normal operation of the system or investments to 

physical realisation of the modifications. 

 Systems can be tested before their acquisition. 

 Hypotheses about how or why certain phenomena occur can be tested for feasibility. 

 Time can be compressed or expanded. 

 Insight about internal workings of the system, i.e. about interactions between its elements, 

importance of their parameters with respect to performance of the system or about 

understanding how the system operates, can be obtained. 

 Bottleneck analysis can be performed to identify elements decreasing efficiency of the 

system. 

 "What-if"” questions can be answered. This is particularly useful in tasks of the system 

synthesis type. 

We can also identify some disadvantages: 

 Model building requires special training. 

 It may be difficult to interpret simulation results. 

 Realisation of a simulation study may be time consuming and expensive. 

An example of a complete simulations study can be found in section VI.8. 
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II Taxonomy of Systems and Models 
In the introductory chapter we briefly defined what system and model is. In this one we explore their 

nature more deeply and present a taxonomy of systems and models, together with several examples. 

Different taxonomies can be found in related literature, here we will stick to the one presented in 

(Cassandras & Lafortune, 2008), which deals with discrete event systems (DES) from the point of 

view of the systems and control theory. The primary reason why we picked up this view on the 

taxonomy is that it clearly describes position of discrete event systems (DES) and DES in a class of 

systems with which we deal primarily in this book. The choice of notation and examples in this 

chapter is also based on (Cassandras & Lafortune, 2008). 

It should be noted that when we speak about taxonomy of systems we in fact mean types of models 

that are the most suitable for given types of systems. And from the basic types of models, this 

taxonomy is primary related to mathematical models. How these models can be obtained and what 

is their form is explained in the next two sections. 

II.1 Input-Output Modelling 
In the process of modelling we try to create something (a device) that mimics the behaviour of the 

original system. To make a simulation or formal analysis of the model possible, we need to describe 

the model in an exact, unambiguous, way. That is, by mathematical means. When observing a real 

system we can identify parameters whose values can be altered and other parameters whose values 

change when some of the parameters from the first group are altered. For example, consider an 

automobile. The positions of its clutch, brake and throttle pedals, selected gear, the position of its 

steering wheel and amount of remaining fuel belong to the first group while rpm (revolutions per 

minute) of its engine, its speed and direction belong to the second. When creating a mathematical 

model we identify the parameters from the first group with input variables and the ones from the 

second group with output variables. Both of these parameters have to be measurable, because our 

task is to define a relationship between them. Their values change as time passes, so they can be 

defined as time functions. Assume that we have 𝑝 input and 𝑚 output variables. Then the input 

variables form the set ( 1 ) and they can be written as a column vector ( 2 ). The output variables are 

members of ( 3 ) and their vector form is ( 4 ). The symbol 𝑇 in upper index in ( 2 ) and ( 4 ) stands for 

vector or matrix transposition. The vector u⃑ (t) can be simply called an input and the vector y⃑ (t) an 

output. 

{𝑢1(𝑡), … , 𝑢𝑝(𝑡)} ( 1 ) 

�⃑� (𝑡) = [𝑢1(𝑡), … , 𝑢𝑝(𝑡)]
𝑇

 ( 2 ) 

{𝑦1(𝑡), … , 𝑦𝑚(𝑡)} ( 3 ) 

𝑦 (𝑡) = [𝑦1(𝑡), … , 𝑦𝑚(𝑡)]𝑇 ( 4 ) 

 

The variable 𝑡 is called the time variable and its values are from an interval < 𝑡0, 𝑡𝑓 >. The interval 

represents a period of time during which we study behaviour of the system, i.e. we modify input 

variables and measure output variables. We can also have variables that don’t belong to the input of 

output ones. These are called suppressed output variables (Cassandras & Lafortune, 2008). 
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On the basis of an observation of the real system and adjustment and measuring of its parameters 

we should be able to define a mathematical relationship between the input and output variables. 

Suppose that we can establish this relationship in the form of m functions 

 𝑔1, … , 𝑔𝑚 

defined as 

𝑦𝑖(𝑡) = 𝑔𝑖 (𝑢1(𝑡),… , 𝑢𝑝(𝑡)), 

where 1 ≤ 𝑖 ≤ m. Then we obtain a mathematical model in the form ( 5 ).  

𝑦 (𝑡) = 𝑔 (�⃑� (𝑡)) = [𝑔1(𝑢1(𝑡), … , 𝑢𝑝(𝑡))…𝑔𝑚(𝑢1(𝑡), … , 𝑢𝑝(𝑡))]
𝑇 ( 5 ) 

 

To shorten the inscription we usually write the relationship between input and output as ( 6 ). In 

general, g⃑  can explicitly depend on 𝑡, which we designate as ( 7 ). 

𝑦 = 𝑔 (�⃑� ) ( 6 ) 

𝑦 = 𝑔 (�⃑� , 𝑡) ( 7 ) 

  

              
a)                                                                             b) 

Figure 1. A system (a) and its model (b). 

Usually, there is more than one way of creating a model of a given system. Depending on the 

purpose of the model and required level of detail we can pick up different output and input variables 

and the function g⃑  will also be different. Even on the same level of detail and using the same 

mathematical apparatus we can create several models that will differ in selection of input and output 

variables. This is illustrated by the following example.  

Example 1. Current divider circuit. 

 

Figure 2. A simple current divider circuit. 

Figure 2 shows a simple electric circuit with a DC power supply delivering voltage 𝑉 and two resistors 

with resistances 𝑅1 and 𝑅2, connected in parallel. A simple mathematical model of this circuit can be 

built on the basis of Kirchhoff's current law and Ohm's law. Application of these laws results in 

equations ( 8 ) and ( 9 ). 

systeminput output
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𝑖 = 𝑖1 + 𝑖2 ( 8 ) 

𝑖1 =
𝑉

𝑅1
,    𝑖2 =

𝑉

𝑅2
 ( 9 ) 

 

For this system we can build several models, depending on what parameters we consider fixed, what 

we would like to control and what we would like to measure. For example 

 The power supply voltage 𝑉 is fixed, we can adjust 𝑅1 and 𝑅2 to control 𝑖1 and 𝑖2. We get a 

model with two input variables 𝑢1 and 𝑢2 and two output variables 𝑦1 and 𝑦2: 

𝑢1(𝑡) = 𝑅1, 𝑢2(𝑡) = 𝑅2,    𝑦1(𝑡) = 𝑖1 =
𝑉

𝑅1
,    𝑦2(𝑡) = 𝑖2 =

𝑉

𝑅2
 

 

 The power supply voltage 𝑉  and the resistance 𝑅1 are fixed, we can adjust 𝑅2 and we are 

interested in measuring 𝑖. Now we will have  a model with one input variable 𝑢1 and one 

output variable 𝑦1: 

𝑢1(𝑡) = 𝑅1,      𝑦1(𝑡) = 𝑖 = 𝑉
𝑅1 + 𝑅2

𝑅1𝑅2
 

□ 

II.2 State Space Modelling 
When creating a model of a system it is not always possible to define relation between its input �⃑�  

and output 𝑦  in such a way that 𝑦 (𝑡) will depend only on �⃑� (𝑡). Sometimes an additional information 

is necessary – an information about previous inputs and outputs of the system (i.e. about �⃑� (𝑡′) and  

𝑦 (𝑡′) for some 𝑡′ < 𝑡). This information forms a state of the system, which we can more precisely 

define as (Cassandras & Lafortune, 2008): 

State of a system at time 𝒕𝟎 is the information required at 𝑡0 such that 𝑦⃑⃑⃑  (𝑡), for all 𝑡 ≥ 𝑡0, is uniquely 

determined from this information and from �⃑� (𝑡), 𝑡 ≥ 𝑡0. 

Like in the case of the input and output, we can define the state as a vector 𝑥  of 𝑛 state variables 

𝑥1 to 𝑥𝑛. 

𝑥 (𝑡) = [𝑥1(𝑡), … , 𝑥𝑛(𝑡)]𝑇 ( 10 ) 

 

The set of all possible values the state 𝑥  of given system may take is the state space of the system, 

and we will denote it as 𝑋. Normally, 𝑋 is finite-dimensional, i.e. 𝑛 is a final number, but there are 

cases where it is infinite-dimensional. 

The state 𝑥 (𝑡) is determined by the set of state equations. They compute 𝑥 (𝑡)  on the basis of the 

input �⃑� (𝑡) an the initial state 𝑥 (𝑡0), 𝑡0 ≤ 𝑡. Their form may vary, but in the systems and control 

theory they are mostly differential equations (Cassandras & Lafortune, 2008) of the form ( 11 ). 

𝑥 ̇(𝑡) = 𝑓 (𝑥 (𝑡), �⃑� (𝑡), 𝑡) ( 11 ) 

𝑥 (𝑡0) = 𝑥0 ( 12 ) 

𝑦 (𝑡) = 𝑔 (𝑥 (𝑡), �⃑� (𝑡), 𝑡) ( 13 ) 
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A state space model of a system will then consist of the state equations ( 11 ), initial conditions ( 12 ) 

and output equations ( 13 ). The relationship between input, state and output, expressed by them, is 

what we usually call dynamics of a system. Assuming that input and output vectors are in the form ( 2 

) and ( 4 ) and state vector in the form ( 11 ) , the model ( 11 ) - ( 13 ) actually contains n state 

equations with initial conditions: 

�̇�𝑖(𝑡) = 𝑓𝑖(𝑥1(𝑡),… , 𝑥𝑛(𝑡), 𝑢1(𝑡), … , 𝑢𝑝(𝑡), 𝑡), 𝑥𝑖(𝑡0) = 𝑥𝑖0, 1 ≤ 𝑖 ≤ 𝑛 

and m output equations: 

𝑦𝑗(𝑡) = 𝑔𝑗(𝑥1(𝑡), … , 𝑥𝑛(𝑡), 𝑢1(𝑡),… , 𝑢𝑝(𝑡), 𝑡), 1 ≤ 𝑗 ≤ 𝑚 

As in the case of the input-output modelling there are several ways of defining state-space model of 

the same system. The concept of the state-space model is illustrated by the following example. 

Example 2. Spring-mass system 

Consider a spring, characterized by the spring constant k and with an object of mass m attached to it. 

Together they form a spring-mass system as depicted in Figure 3. Supposing that the spring is not de- 

 

Figure 3. Spring-mass system. 

formed (that is stretched or compressed beyond its elastic limit), the system behaves according to 

the Hooke's law ( 14 ), that states that the force F with which the spring pushes back is linearly 

proportional to the displacement y from its equilibrium length. Since force equals to mass times 

acceleration and acceleration is the second derivative of the displacement, we end up with ( 15 ) with 

initial conditions ( 16 ) and ( 17 ). We assume that 𝑡0 = 0. 

𝐹 = −𝑘𝑦 ( 14 ) 

𝑚�̈� = −𝑘𝑦 ( 15 ) 

𝑦(0) = 𝑢0 ( 16 ) 

�̇�(0) = 0 ( 17 ) 

 

The conditions state that at the beginning the object is pushed by the distance |𝑢0| downwards ( 16 )  

and its velocity is zero ( 17 ). As in the previous example, we can define several models of the system 

with different inputs and outputs. Probably the most common case is that we would like to set the 

initial displacement 𝑢0 and observe the actual displacement y of the object over time. In this case the 

input function will be defined as  

m

m
u(0)=y(0)
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𝑢(𝑡) = {
𝑢0

0
  
𝑡 = 0
𝑡 > 0

 ( 18 ) 

 

and the output function 𝑦(𝑡) is the solution of ( 15 ). Because the differential equation ( 15 ) contains 

the second derivative of y and there are no other variables we will need two state variables, 𝑥1(𝑡), 

𝑥2(𝑡) that will form two state equations ( 19 ), ( 20 ), initial conditions ( 21 ) and output equation ( 22 

). The variable 𝑥1(𝑡) is the displacement of the object and  𝑥2(𝑡) its speed. 

𝑥1̇(𝑡) = 𝑥2(𝑡) ( 19 ) 

𝑥2̇(𝑡) = −
𝑘

𝑚
𝑥1(𝑡) ( 20 ) 

𝑥1(0) = 𝑢0,   𝑥2(0) = 0 ( 21 ) 

𝑦(𝑡) = 𝑥1(𝑡) ( 22 ) 

 

The model can be also written in the matrix form ( 23 ) to ( 25 ). 

[
𝑥1̇

𝑥2̇
] = [

0 1

−
𝑘

𝑚
0
] [

𝑥1

𝑥2
] ( 23 ) 

[
𝑥1(0)

𝑥2(0)
] = [

𝑢0

0
] ( 24 ) 

𝑦 = [1 0] [
𝑥1

𝑥2
] ( 25 ) 

□ 

II.2.1 Derivative 

In state space modelling we use derivatives quite often, so it’s the right place to recall definition of 

this term. The derivative is a measure of how a function changes as its input changes. The process of 

finding a derivative of a function is called differentiation and the reverse process is 

antidifferentiation, which is the same as integration.  

                               
              (a)                                                                  (b) 

Figure 4. Tangent lines for function f(x) and slope of a line (b). 

 

Suppose that we have a real function 𝑓 of a single variable ( 26 ).  

𝑦 = 𝑓(𝑥) ( 26 ) 

 

Then its derivative at a point 𝑎 is the slope of the tangent line to the graph of 𝑓 at the point 𝑎. The 

concepts of tangent line and slope are visualized in Figure 4. The slope, or gradient, of a line is a 

x

y

f(x)

x

y

φ

x
1

x
2

y
1

y
2
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number that describes both the direction and the steepness of the line. If the line is as in Figure 4 

then its slope is defined as ( 27 ). 

𝑚 =
∆𝑦

∆𝑥
=

𝑦2 − 𝑦1

𝑥2 − 𝑥1
= 𝑡𝑎𝑛 (𝜑) ( 27 ) 

 

The expression ( 27 ) is called Newton's difference quotient. As the tangent line can be different in 

each point of the function, the derivative is the slope for ∆𝑥 approaching 0 and is defined as: 

𝑓′(𝑎) = 𝑙𝑖𝑚
ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
 ( 28 ) 

 

The derivative in ( 28 ) is called the first derivative of 𝑓. We can also have the second derivative of 𝑓, 

denoted  𝑓′′,  which is the first derivative of 𝑓′. Derivatives of higher degree are defined similarly, 

third derivative is denoted as  𝑓′′′ and the n-th as  𝑓(𝑛). Here we used Lagrange's notation for 

derivatives, there are also three other notations: 

 Leibniz's notation. The first derivative is denoted as  
𝑑𝑦

𝑑𝑥
,   

𝑑𝑓

𝑑𝑥
(𝑥)  or  

𝑑

𝑑𝑥
𝑓(𝑥) and the n-th as 

𝑑𝑛𝑦

𝑑𝑥𝑛,   
𝑑𝑛𝑓

𝑑𝑥𝑛 (𝑥) or 
𝑑𝑛

𝑑𝑥𝑛 𝑓(𝑥)  

 Euler's notation. The first derivative is 𝐷𝑥𝑦   or 𝐷𝑥𝑓(𝑥) the n-th is   𝐷𝑥
𝑛𝑦 or 𝐷𝑥

𝑛𝑓(𝑥).  

 Newton's notation is used exclusively for time derivatives, that is for derivatives of 𝑦 = 𝑓(𝑡)). 

For the first derivative we have �̇� and for the second �̈�. The first derivative is defined as 

�̇�(𝑡) = lim
𝜏→0

𝑓(𝑡 + 𝜏) − 𝑓(𝑡)

𝜏
 

If the function ( 26 ) has a derivative at 𝑎, i.e. 𝑓′(𝑎), then we say that 𝑓 is differentiable at 𝑎. To be 

differentiable at 𝑎, the function 𝑓 also have to be continuous at 𝑎, but this is only a mandatory 

condition. For example, the absolute value function 𝑦 = |𝑥| is continuous at 𝑥 = 𝑎, but it doesn’t 

have a derivative there. 

II.3 Taxonomy 
After establishing more specifically how (mathematical) models look like we can proceed to the 

taxonomy presented in (Cassandras & Lafortune, 2008). The taxonomy is based on several criteria 

and each criterion divides systems into two disjoint classes. 

II.3.1 Static vs. Dynamic 

The first criterion is whether output of the system in question depends only on its input at the same 

time instant or also on inputs at some previous time instants.  

The systems that fulfil this criterion, i.e. the system where 𝑦 (𝑡) depends only on �⃑� (𝑡), are called 

static systems. In their case the input-output models are sufficient as the state equation will always 

be in the form 0)( tx


. This means that the state is fixed and output depends only on input values in 

the same moment of time. The electric circuit from Example 1 is a static system. Other group of static 

systems are, for example, combinational logic circuits. 
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In dynamic systems or models 𝑦 (𝑡) depends also on �⃑� (𝑡′), 𝑡′ < 𝑡 (except of 𝑡′ = 𝑡0). Here a model of 

the state-space type is required. The spring-mass system from Example 2 is a dynamic system. Other 

example are sequential logic circuits. 

II.3.1.1 Sample Paths 

In dynamic systems for each particular vector of functions 𝑢𝑖⃑⃑  ⃑(𝑡) = [𝑢1
𝑖 (𝑡), … , 𝑢𝑝

𝑖 (𝑡)]
𝑇

 that are input 

variables we get a particular vector of functions 𝑥𝑖⃑⃑  ⃑(𝑡) = [𝑥1
𝑖 (𝑡),… , 𝑥𝑛

𝑖 (𝑡)] that are state variables. 

Each of the functions 𝑥1
𝑖 (𝑡) to 𝑥𝑛

𝑖 (𝑡) is then called a sample path or a state trajectory. Of course, for 

different input variables we get different state trajectories. 

Sample paths can be also described as curves in 𝑛-dimensional space. This representation is in more 

detail treated in (Cassandras & Lafortune, 2008). Examples of graphical representation of sample 

paths can be found in Figure 6 and Figure 8. 

II.3.2 Time-invariant vs. Time-varying  

Time-invariant systems are systems where the output is always the same when the same input is 

applied. So, when at some time instant 𝑡 the input is �⃑� (𝑡) = 𝑎  and the output is 𝑦 (𝑡) = 𝑟𝑎⃑⃑  ⃑  then 

when we will have the same input 𝑎  at any different time instant 𝑡′ (i.e. �⃑� (𝑡′) = 𝑎 ) then the output 

will always be the same as at  𝑡 (i.e. 𝑦 (𝑡′) = 𝑟𝑎⃑⃑  ⃑). State and output of time-invariant systems don’t 

explicitly depend on time therefore the corresponding equations have the form ( 29 ). 

𝑥 ̇(𝑡) = 𝑓 (𝑥 (𝑡), �⃑� (𝑡))  

𝑦 (𝑡) = 𝑔 (𝑥 (𝑡), �⃑� (𝑡)) 
( 29 ) 

 

In time-varying systems we can get different outputs for the same inputs at different time moments. 

This means that their state and output explicitly depend on time. The corresponding equations have 

the form ( 30 ). 

x⃑ ̇(𝑡) = f (x⃑ (𝑡), �⃑� (𝑡), t) 

𝑦 (𝑡) = 𝑔 (x⃑ (𝑡), �⃑� (𝑡), t) 
( 30 ) 

 

The spring-mass system from Example 2 is a time-invariant system. But we can create a time-varying 

system from it by assuming that the mass 𝑚 changes as time passes. For example, the object 

attached to the spring can be an open bucket full of a quickly evaporating liquid. Then the mass 𝑚 

decreases with time and when we push the object by the same distance again and release it we will 

observe different behaviour (output) as for the first time. However, we can make such a system time-

invariant again by adding a parameter on which the evaporation rate of the liquid depends to the 

input variables. 

II.3.3 Linear vs. Nonlinear 

A linear function is a function that preserves vector addition (also called superposition) and scalar 

multiplication (homogeneity of degree 1). For example, let’s have a function ℎ that maps 𝑘-

dimensinal real vectors to 𝑘-dimensinal real vectors ( 31 ), real vectors 𝑣 , �⃑⃑� ∈ ℝk and real constants 

𝑐, 𝑐1, 𝑐2 ∈ ℝ. Then ℎ preserves vector addition if ( 32 ) holds and scalar multiplication if ( 33 ) holds. 

To sum it up, ℎ is linear when ( 34 ) is true. 
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ℎ:ℝk → ℝk ( 31 ) 

ℎ⃑ (𝑣 + �⃑⃑� ) =  ℎ⃑ (𝑣 ) + ℎ⃑ (�⃑⃑� ) ( 32 ) 

ℎ⃑ (𝑐. 𝑣 ) =  c. ℎ⃑ (𝑣 ) ( 33 ) 

ℎ⃑ (𝑐1. 𝑣 + 𝑐2. �⃑⃑� ) =  𝑐1. ℎ⃑ (𝑣 ) + 𝑐2. ℎ⃑ (�⃑⃑� ) ( 34 ) 

 

The linearity property is defined in the same way for the functions 𝑓  and 𝑔  from our state-space 

model ( 11 ) - ( 13 ) despite of the fact that these functions map vectors of functions to vectors of 

functions. 

Then a linear system is a system where both f  and 𝑔  are linear. Assuming that �⃑� ,  𝑥  and 𝑦  are as 

defined in ( 2 ), ( 4 ) and ( 10 ) the state model of a linear system can be written in the form ( 35 ). 

𝑥 ̇(𝑡) = A(𝑡)𝑥 (𝑡) + B(𝑡)�⃑� (𝑡) 

𝑦 (𝑡) = C(𝑡)𝑥 (𝑡) + D(𝑡)�⃑� (𝑡) 
( 35 ) 

 

where A(𝑡) is an 𝑛 × 𝑛 matrix, B(𝑡) is an 𝑛 × 𝑝 matrix, C(𝑡) is an 𝑚 × 𝑛 matrix and D(𝑡) is an 𝑚 × 𝑝 

matrix. If the system is also time-invariant then all four matrices are constant and we can rewrite ( 35 

) as ( 36 ). 

𝑥 ̇(𝑡) = A𝑥 (𝑡) + B�⃑� (𝑡)  

𝑦 (𝑡) = C𝑥 (𝑡) + D�⃑� (𝑡) 
( 36 ) 

 

The entries stored in these matrices are usually called model parameters and it is often the task of 

simulation to find the most suitable values for them. 

The preservation of the superposition in linear systems means that if for a concrete stimulus, that is 

for some vector 𝑎  of values of input variables, we get a response (vector of values of output 

variables) 𝑟𝑎⃑⃑  ⃑ and for some �⃑�  we get 𝑟𝑏⃑⃑  ⃑ then for an input 𝑐  that is the superposition of these two 

stimuli (i.e. 𝑐 = 𝑎 + �⃑�  ) we get the response  𝑟𝑐⃑⃑  that is the superposition of the two original responses 

(i.e. 𝑟𝑐⃑⃑ = 𝑟𝑎⃑⃑  ⃑ + 𝑟𝑏⃑⃑  ⃑ ). The preservation of the scalar multiplication means that when we multiply a 

stimulus by 𝑐 then the corresponding response is also multiplied by 𝑐. 

In a nonlinear system f  or 𝑔  or both are not linear. An example of nonlinear system follows. The 

systems in previous examples are linear. 

Example 3. Flow system 

Suppose we have a tank with some fluid (Figure 5). The fluid can flow into the tank and out of the 

tank. The flow in is defined by the function 𝑓𝑙𝑖(𝑡) and the flow out by the function 𝑓𝑙𝑜(𝑡) . Both 

flows can be regulated by corresponding input and output valves. The capacity of the tank is 

represented by its maximum fluid level 𝐶𝑝. The function 𝑥1(𝑡) is an actual level of fluid in the tank 

and its value is from the interval < 0, 𝐶𝑝 >. 
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Figure 5. A simple flow system. 

When building a model of this system we can identify the flow in and out with input variables 𝑢1(𝑡) 

and 𝑢2(𝑡). The state variable will be the actual flow and we will keep its original name - 𝑥1(𝑡). The 

output of the model will be identical to its state. This model allows us to control both flows and 

observe an actual level of fluid in the tank. 

The state space model of the system will then be as follows: 

𝑢1(𝑡) = 𝑓𝑙𝑖(𝑡), 𝑢2(𝑡) = 𝑓𝑙𝑜(𝑡) ( 37 ) 

𝑥1̇(𝑡) = {

0 (𝑥1(𝑡) = 0 ∧ 𝑓𝑙𝑖(𝑡) ≤ 𝑓𝑙𝑜(𝑡))  ∨

       ∨  (𝑥1(𝑡) = 𝐶𝑝 ∧ 𝑓𝑙𝑖(𝑡) ≥ 𝑓𝑙𝑜(𝑡))
  
fli(𝑡) − 𝑓𝑙𝑜(𝑡) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ( 38 ) 

𝑥1(0) = 0 ( 39 ) 

𝑦1(𝑡) = 𝑥1(𝑡) ( 40 ) 

The input variables are defined by ( 37 ), the state equation is ( 38 ) and the output equation is ( 40 ). 

The initial condition ( 39 ) states that the tank is empty at the beginning. For the sake of simplicity we 

decided to define the flow in and out as a change of the fluid level in the tank. 

What we can see here is that the definition of the state equation ( 38 ) is not that “smooth” as in the 

previous examples. There are two cases, in the first one 𝑥1̇(𝑡) = 0 and in the second one 𝑥1̇(𝑡) =

fli(𝑡) − 𝑓𝑙𝑜(𝑡). The first case means that there will not be any decrease of the fluid level when the 

tank is empty, despite the output valve being open. And, similarly, there will be no increase in the 

fluid level after 𝐶𝑝 is reached, despite the input valve being open. The constraints for 𝑥1(𝑡) = 0 and 

𝑥1(𝑡) = 𝐶𝑝 cause discontinuities in 𝑥1̇(𝑡) and also non-linearity of the system.  

To illustrate the nature of non-linearity of this system in more detail, assume that the fluid level 

𝑥1(𝑡) is measured in millimetres and the volume and dimensions of the tank are such that the 

increase or decrease of the fluid volume by 1 𝑙 will change the fluid level by 1 𝑚𝑚 and 𝐶𝑝 =

250 𝑚𝑚 (in fact 250 𝑙). So, we can define input and output flow in millimetres per second (𝑚𝑚/

𝑠𝑒𝑐). Also assume that for each 𝑡, 𝑡 ∈< 𝑡0, 𝑡1 >, 𝑡0 = 0 𝑠𝑒𝑐, 𝑡1 = 75 𝑠𝑒𝑐 it holds that  

𝑢1
1(𝑡) = 𝑓𝑙𝑖

1(𝑡) = 5 𝑚𝑚/𝑠𝑒𝑐  ( 41 ) 

x
1
(t)

Cp

fl
i
(t)

fl
o
(t)
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𝑢2
1(𝑡) = 𝑓𝑙𝑜

1(𝑡) = 0 𝑚𝑚/𝑠𝑒𝑐 

so 5 litres of the fluid will flow into the tank each second, increasing the level by 5 𝑚𝑚 until 

𝑡𝑎 = 50 𝑠𝑒𝑐 . At 𝑡𝑎 the tank will be full and will remain full until 𝑡1. Now observe the same system 

with values of both input variables doubled. That is with 

𝑢1
2(𝑡) = 𝑓𝑙𝑖

1(𝑡) = 2 ∙ 5 = 10  𝑚𝑚/𝑠𝑒𝑐  

𝑢2
2(𝑡) = 𝑓𝑙𝑜

1(𝑡) = 2 ∙ 0 = 0 𝑚𝑚/𝑠𝑒𝑐 ( 42 ) 

If the system will be linear, the speed of the fluid level increase will always be double than in the first 

case. However, this is not true in the interval < 𝑡𝑏 , 𝑡𝑎), where  𝑡𝑏 = 25 𝑠𝑒𝑐, because the maximum 

level is already reached at 𝑡𝑏 and the level will not increase from this moment. It is true again in 

< 𝑡𝑎 , 𝑡2 > as here the fluid level is fixed (𝐶𝑝) in both cases. The sample pats for both cases are shown 

in Figure 6. The state variable (function) 𝑥1
1(𝑡) is for the first case ( 41 )  and 𝑥1

2(𝑡) for the second 

case ( 42 ). The situation will be similar if we multiply by other scalars or add different values of input 

parameters.  

                        

                      

Figure 6. Sample paths for the flow system. 

□ 

II.3.4 Continuous-State vs. Discrete-State 

In section II.2 we defined the state space 𝑋 of a system as a set of all possible values its state 𝑥  may 

take. And according to the nature of the state space we can divide systems (models) to continuous-

state and discrete-state. 

A continuous-state model is a model where state variables are continuous variables, i.e. they can 

generally take on any real (or complex) value. A consequence of this is that even if values of state 

variables are from some bounded non-empty interval, there are infinitely many of them and they 

form an uncountable set. An uncountable set is a set with the cardinality higher than the cardinality 

of the set of natural numbers. State equations in these models are usually differential. Continuous-

state dynamic systems has been presented in Example 2 and Example 3. 
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In a discrete-state model domains of state variables are discrete sets. They can be finite, for example 

a set of basic colours or infinite but countable (also called countably infinite) such as the set of 

natural numbers or the set of integers. The state in these systems doesn’t change continuously but 

suddenly, from one discrete value to another and the mechanism of state transition can be usually 

described in the form of logical statements such as “if some event 𝑒 occurs and the system is in the 

state 𝑥, then change the state to 𝑥′”. This makes them simpler to visualise but the mathematical 

apparatus needed to formally express the state equations may be considerably more complex as in 

the case of the continuous-state models (Cassandras & Lafortune, 2008). 

There can also be so-called hybrid systems where some state variables are continuous and some are 

discrete.  

A distinction between continuous and discrete state variables is illustrated in Example 4 while a 

complete discrete-state model is presented in Example 5.  

Example 4. Fluid tank vs. fluid storage 

In the flow system from Example 3 the state variable 𝑥1(𝑡) is continuous. If the capacity of the 

system is 250 𝑙 and the maximal fluid level is 𝐶𝑝 = 250 𝑚𝑚 then 𝑥1(𝑡) can take any real value from 

the closed bounded interval < 0, 250 >. This means infinitely many states. And uncountable number 

of states, too, as we can find infinitely many real numbers between each two distinct real numbers, 

no matter how close they are one to each other. 

Now, imagine a fluid storage system of the same capacity, 250 𝑙, but in this case the fluid is stored in 

sealed containers, each containing 25 𝑙 of the fluid. Instead of manipulating valves here one can add 

or remove a container to or from the storage area. And the state variable can only take values from 

the set {0,25,50,75,100,125,150,175,200,225,250}. 

□ 

Example 5. Doctor’s waiting room 

A waiting room, i.e. one that is a part of a doctor’s office, is another example of a natural discrete-

state system. The state variable is a number of patients currently present in the room and for input 

variables we can choose functions that determine how patients arrive and leave the room (Figure 7). 

 
 

Figure 7. A system describing arrival and departure of patients to and from a doctor’s waiting room 

For the sake of simplicity we assume that only one patient can arrive or leave at once and no arrival 

and departure occur simultaneously. We also assume that the capacity of the waiting room is not 

limited. Then the input function for the arrival can be defined as in ( 43 ) and for the departure as in ( 

44 ). 

patient 
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patient
called by
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𝑢1(𝑡) = {
1
0
  
𝑖𝑓 𝑎 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑎𝑟𝑟𝑖𝑣𝑒𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                       

 ( 43 ) 

𝑢2(𝑡) = {
1
0
  
𝑖𝑓 𝑎 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                        

 ( 44 ) 

  

Considering the assumptions we made and the definitions of the input functions we can have three 

different situations: 

1. A patient arrives to the waiting room: 𝑢1(𝑡) = 1 and 𝑢2(𝑡) = 0. The value of the state 

variable is incremented by one. 

2. A patient leaves the waiting room, because he is called by the doctor: 𝑢1(𝑡) = 0 and 

𝑢2(𝑡) = 1. The value of the state variable is decremented by one. 

3. No one arrives to or leaves the room: 𝑢1(𝑡) = 0 and 𝑢2(𝑡) = 0. The value of the state 

variable is unchanged. 

In this model the state is changing suddenly from one discrete value to another. Because of these 

discontinuities we cannot use differential equations to define state equation of the model. Instead of 

it we write the equation in the form ( 45 ), which defines how the value of the state variable in the 

next time moment 𝑡 + 1 depends on the values in the given time moment 𝑡 and values of inputs at 𝑡. 

 

𝑥(𝑡 + 1) = {

𝑥(𝑡) + 1

𝑥(𝑡) − 1
𝑥(𝑡)

      𝑢1(𝑡) = 1 ∧  𝑢2(𝑡) = 0

      𝑢1(𝑡) = 0 ∧  𝑢2(𝑡) = 1 ∧ 𝑥(𝑡) > 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ( 45 ) 

  

A sample path for this system can be seen in Figure 8. Here we can see that the state remains 

unchanged for the most of the time. It changes only at time moments when an event of patient 

arrival or departure occurs. 

 

Figure 8. Sample path for the Doctor’s waiting room. 

□ 

II.3.5 Continuous-time vs. Discrete-time 

This is similar to the previous criterion, but now it is about the time. Continuous-time systems are 

systems where the time is a continuous variable, so all input, state and output variables are defined 

for all possible values of time (from given interval). Thinking about the time as a continuous variable 
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is natural. In fact, each real system is a continuous-time system: its inputs and outputs can be 

observed at any time instant (in which the given system exists). It is when we create and simulate 

models that we come to the discrete-time systems. Continuous-time systems are usually described 

by differential equations and all systems in the examples above, except Example 5, are of this type. 

In discrete-time systems the time is a discrete variable. So, if the time is from some interval (e.g. 

from 2 to 4) then it has finite number of values (e.g. 2, 2.5, 3, 3.5, 4). And input, state and output 

variables of such system are defined at these time instants only. We said that it is natural to consider 

time a continuous variable, so the question is why we deal with systems with discrete time. But, in 

fact, there are several cases where such systems are appropriate: 

1. Output and state variables can change only at exactly defined time instants. This is, for 

example, the case of digital circuits, which operate according to some internal clock. So, any 

change in them can only happen when these clock ticks. Between the ticks the state and 

output remain unchanged, so there is no reason to define corresponding variables for any 

time moment. 

2. A model of a system is based on a finite set of data, recorded at certain time moments 

(usually at regular intervals). In some cases these data can be approximated to continuous 

functions. If not, we consider that they change only at the instants when they were 

measured. We can say that a system is discrete-time because of our inability to handle it as a 

continuous-time system.  

It should be noted that continuous-time systems usually become de-facto discrete-time systems 

when simulated on digital computers. This is because in most cases we rely on numerical methods 

for differential equations calculation and these methods compute values for discrete time instants 

only. Because of this it is reasonable to think about using a discrete-time model instead of a 

continuous-time model for given modelling and simulation task. 

Time values in discrete-time systems form a sequence 

𝑡0, 𝑡1, … , 𝑡𝑘 , …, ( 46 ) 

 

where  

∀𝑖(𝑖 ≥ 0): 𝑡𝑖 < 𝑡𝑖+1. 

The distance between two subsequent values is constant and is usually called sampling interval (𝑇): 

∀𝑖(𝑖 ≥ 0): 𝑡𝑖+1 = 𝑡𝑖 + 𝑇. 

Instead of differential equations a state space model of a discrete-time system uses so-called 

difference equations, where the real variable 𝑡 is replaced by an integer variable 𝑘. The variable 𝑘 

defines the index of given value in the sequence ( 46 ), e.g. 𝑘 = 3 for 𝑡3. We can also say that 𝑘 is the 

number of intervals of the length 𝑇 that passed since the initial time point 𝑡0. The exact form of the 

state space model is as follows: 

𝑥 (𝑘 + 1) = 𝑓 (𝑥 (𝑘), �⃑� (𝑘), 𝑘) ( 47 ) 

𝑥 (0) = 𝑥0 ( 48 ) 
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𝑦 (𝑘) = 𝑔 (𝑥 (𝑘), �⃑� (𝑘), 𝑘) ( 49 ) 

 

An example of a discrete-time sample path can be seen in Figure 9. It represents the state variable 

𝑥1
1(𝑡) from Figure 6, but here the time line is a sequence from 0 to 70 with a sampling interval 

𝑇 = 10.   

 

Figure 9. Discrete-time sample path for the flow system. 

 

II.3.6 Time-driven vs. Event-driven and Discrete Event Systems 

We distinguish between these two types of systems with respect to what (we think) is causing a 

system to change its state. 

In time-driven systems the driving force is the time itself, the state continuously changes as time 

changes. Continuous-state systems, both continuous-time and discrete-time, belong here, because 

there are infinitely many values for state variables and we can observe different values no matter 

how small is the interval between observations. All dynamic systems introduced in the examples 

above are time-driven. 

In event-driven systems the cause of a state change is an occurrence of some asynchronously 

generated discrete event and the state changes instantaneously, at the moment of the event 

occurrence, from one value to another. So, all event-driven systems are discrete-state, too. The term 

asynchronously generated means that these events can occur at any time moment, not only at ticks 

of a clock. Cassandras and Lafortune (2008) draw a nice analogy between event-driven state 

transitions and interrupts in computer systems: “While many of the functions in a computer are 

synchronized by a clock, and are therefore time-driven, operating systems are designed to also 

respond to asynchronous calls that may occur at any time. For instance, an external user request or a 

timeout message may take place as a result of specific events, but completely independent of the 

computer clock.” 

The doctor’s waiting room from Example 5 can be regarded as an event-driven system, because the 

state (the number of people in the waiting room) changes only when one of the two events, the 

patient arrival and the patient call, occurs. But in Example 5 we defined it as a time-driven system as 

we assumed that these events occur only at clock ticks. If we want to describe it as event-driven 

system we need a formalism different from the difference equation ( 45 ). We need to relate state 
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changes to events, not to time, to express relations like “if a patient arrives, the number of patients 

in the waiting room is increased by one”. An appropriate language to describe event-driven systems 

are Petri nets, which utilisation for modelling and simulation of these systems is treated is chapter VI, 

including several examples.  

For the first time in our taxonomy we have some form of exclusivity here: all continuous systems are 

time driven, while event-driven systems are a subclass of discrete-time systems. This is not the case 

of the previous criteria: continuous-state systems can be continuous-time or discrete-time and the 

same is true for discrete-state systems. 

In the previous section we mentioned that simulation models of continuous-time systems are in fact 

discrete-time systems. And we have a similar situation here: To simulate an event-driven system on a 

digital computer we have to find a clock precise enough to make every event occurring at some tick 

of the clock. For example, in the case of timed Coloured Petri nets (section VI.5) this clock is 

represented by so-called simulated time and events occur only at its time instants.  

An important class of event-driven systems are discrete-event systems (DES), which are discrete-

state event-driven systems. They are in detail treated in chapters IV to VI of this book.  

II.3.7 Stochastic vs. Deterministic 

A system is considered stochastic if one or more of its output variables are random variables. A 

random variable is a variable, which value cannot be specified exactly, only a set of its possible values 

and a probability of each of these values are known. The mathematical function, which describes 

these possible values and their probabilities, is called a probability distribution. A random variable 

can be discrete or continuous. Systems with no random output variables are called deterministic. 

All the systems presented in the examples above can be made stochastic by making their input 

variables random. Concrete examples of stochastic DES can be found in sections VI.6 and VI.7. 
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III Logic Simulation 
The logic simulation simulates operation of logic systems. As logic systems are also called logic 

circuits or digital circuits there are also alternate names for the logic simulation: digital simulation 

and digital circuit simulation. Here signals are usually represented by discrete bands of analog levels. 

A short overview of logic simulation, presented in this chapter, is based on (Wang et.al, 2009) and 

(Neuschl et al, 1988), where an interested reader can find more information on the topic. 

The logic simulation is typically used in design and development of new circuits to validate and verify 

the design at different levels of abstraction and in diagnostics to check completeness of tests. The 

completeness is checked by running tests on simulated circuits with and without known errors. 

Level Systems Elements Signal units 

Electronic System Level 
(ESL) 

Computer systems CPU, memory, I/O 
devices, channels,... 

word blocks 

Register transfer level 
(RTL) 

CPU, ALU, memory,… register, coder, 
decoder 

words 
(sequences of 
bites) 

Gate level (GL) 

(Logic circuits level) 

register, coder, 
counter 

gates (and, or,…),  
flip-flops(D, JK,…) 

bites 

Electronic circuit level 
(Transistor level) 

gates, flip-flops transistor, diode, 
capacitor, … 

voltage levels 

Physical level transistor, diode, 
resistor 

diffusion areas, 
contacts 

-(physical 
dimensions) 

 

Table 1. Levels of logic circuits design. 

Logic systems can be modelled at several levels of abstraction (Table 1). From these levels only a 

simulation at RTL and GL are usually considered as the logic simulation. At the transistor level circuits 

are modelled as continuous-state systems, where input, output and state equations are defined 

using electrical laws, such as Ohm's or Kirchhoff's laws. And the Electronic System Level provides the 

least detailed view of the circuits, so usually the discrete-event models (e.g. queuing systems) are 

used here. They are often stochastic, because of subsystems described by random distributions. For 

example, a memory unit can be described as a timed automaton or a schematic at RTL or GL. At ESL it 

will be an element, characterized by its capacity and random distributions defining time needed to 

write and read the memory. This randomness is not because there are no corresponding 

deterministic models but because there is no “room” for such details at ESL. 

The distinction between RTL and the gate level is not very clear. We often have mixed designs, where 

one element is a gate and another one is an RTL component such as a memory register or a 

multiplexer. This means that a simulation at these two levels at once has to be possible, too. Models 
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of elements can be mathematical, especially at the gate level, where Boolean algebra and finite 

automata are used, or behavioural, often described in an appropriate language, such as VHDL (Very-

high-speed integrated circuits Hardware Description Language). Logic systems modelled at these two 

levels are discrete-state and can be time-driven or event-driven. 

III.1 Modelling of Digital Circuits 
To model a logic circuit we need to pick up an appropriate modelling language and decide how to 

represent signals (variables) and delays. When using simulation to evaluate diagnostic tests we also 

have to consider means by which faults will be represented.  

III.1.1 Modelling languages 

In general, the languages used to model digital circuits can be divided into two groups:  

1. Languages describing only structure. These languages use fixed library of elements (e.g. 

gates, flip-flops, registers, etc.). Some of them also offer parametrisation, which allows to, for 

example, choose number of inputs or delays of the elements. 

2. Languages describing structure and behaviour. Here new elements can be specified by 

defining their inputs, outputs and behaviour in given language. Languages can be general-

purpose programming languages or hardware description languages, such as VHDL or 

Verilog. 

Languages from both groups can also support hierarchical design, where new elements are defined 

as a composition of existing ones. When a language from the first group has this feature, its 

possibilities become very close or even equal to the languages from the second group. Several 

models of the same circuit are illustrated in Figure 10. The schematic in Figure 10 a) can be regarded 

a definition of a new element (therefore the grey dashed rectangle), provided the hierarchical design 

is supported. 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity mux_2to1 is 

 Port ( A : in   STD_LOGIC; 

        B : in   STD_LOGIC; 

        X : in   STD_LOGIC; 

        Y : out  STD_LOGIC ); 

end mux_2to1; 

 

architecture Behavioral of mux_2to1 is 

begin 

    Y <= A when (X = '0') else B; 

end Behavioral; 

a) b) 

𝑌 = (𝐴 ∙ �̅�) + (B ∙ X) 

c) 

Figure 10. Three models of a 2-to-1 1 bit multiplexer: A schematic in a language describing only 

structure (a), a VHDL code (b) and a mathematical input-output model in the form of a Boolean 

function (c) 
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III.1.2 Signal Models 

In logic simulation, variables are usually called signals. For example, in the schematic in Figure 10 a) 

we have three input signals, or variables, A, B and X, one output variable (signal) Y and three 

“internal” signals i1, i2 and i3. However, the internal signals are not an equivalent of state variables. 

This is a combinational circuit, so an input-output model is satisfactory as it is also clear from the 

models in Figure 10 b) and c). The internal signals are only named connections between the elements 

(gates) in the schematic. Circuits modelled and simulated at RTL or GL are discrete-state systems and 

signal values are from some finite set. Each set of values is regarded a signal model. At GL the most 

common sets, or signal models, are: 

 {L, H}. Only two values are used. The value L (low) is an equivalent of logical 0 in the Boolean 

algebra and the value H (high) of the logical 1. They represent corresponding voltage levels, 

for example L=0V, H=5V. 

 {L, H, u}. Most of the digital circuits contain some sort of memory elements (i.e. flip-flops) 

that can store some value. This value is computed from the previous inputs of given element 

and when the circuit is powered up it is usually unknown. The unknown value is designated 

as u or X. It means that the value is L or H, but we don’t know which one it is. The value u can 

be also used for some kinds of hazards (oscillations). 

 {L, H, Z}, {L, H, u, Z}. These models are used for circuits with so-called tri-state gates, which 

output can have one of the three values: L, H or high impedance, denoted as Z. If the output 

of a tri-state gate is Z then it doesn’t influence the rest of the circuit. This means that outputs 

of more than one tri-state gates can share a common wire provided that all of them but one 

are Z at any time instant.  

 {L, H, R, F}, {L, H, u, R, F}. So far, we assumed that an output of a gate changes instantly from 

one value to another. The additional values R and F allow us to model that this change takes 

some time. The value R  (rise) means that the value of the signal is changing from L to H and  

the value F  (fall) that it is changing from H to L. 

There are also other models with values representing various kinds of hazards. And in the case of 

MOS digital circuits simulation we also distinguish between strong and weak L and H values. At RTL 

the signal values are usually sequences (arrays), which members are values listed above. 

III.1.3 Timing Models 

To make the logic simulation realistic, we need to take into account the time needed to change the 

output of a gate or to transfer a signal through a wire. If we do not take timing into account, we have 

the zero-delay timing model and the models are static. 

In timed models we consider three types of delays: 

 Transport delay. It represents the time a gate needs to change its output after its inputs are 

changed. Various models can be used here and they are described in section III.1.3.1. 

 Inertial delay. It is the minimum input pulse duration necessary for the output to switch 

states. This means that pulses shorter than this delay cannot pass through an element, so the 

inertial delay models the limited bandwidth of logic gates. (Wang et.al, 2009) 

 Wire delay is the time a signal needs to get from an output of one element to an input of 

another element. It can be different for every such connection. 
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Functional elements, such as flip-flops, have more complicated behaviours than simple logic gates 

and require more sophisticated timing models. Besides the input-to-output transport delay, the flip-

flop timing model usually contains timing constraints, such as setup/hold times and inertial delays for 

each input. (Wang et.al, 2009) 

III.1.3.1 Transport Delay Models 

To model the transport delay the following three models are usually used (Wang et.al, 2009): 

 Nominal delay model, where the same delay value is used when the output is rising (i.e. 

going from L to H) and falling (i.e. going from H to L). 

 Rise/fall delay model. Here different values are used for fall and rise. 

 Min–max delay model. This model is used when the transport delay cannot be specified 

exactly. Instead, an interval <min, max> is defined and the actual delay can be any value from 

the interval. 

III.1.4 Fault Models 

Fault models are used to simulate faults in circuits when the simulation is used to evaluate diagnostic 

tests. The test passes the evaluation if it successfully reveals these emulated faults. At the gate level, 

we use short circuits between signal wires and single stuck line fault model. The latter can be 

 stuck at 0, where the given signal is always 0 and 

 stuck at 1, where the given signal is always 1. 

We assume that only one input on one gate will be faulty at a time, which works well for the TTL logic 

but only moderately well for the CMOS logic. At RTL a fault represents a group of faults from lower 

level, i.e. memory faults, control faults, or decoder faults. 

III.2 Logic Simulation Methods 
There are two commonly used methods for performing logic simulations (Wang et.al, 2009): 

compiled-code simulation and event-driven simulation. 

The compiled-code simulation means that the digital circuit model is translated into a computer 

program, a series of machine instructions that emulate individual gates and the interconnections 

between them. This method is incapable of timing modelling and uses zero-delay model only. 

Therefore it can be used only for evaluation of logic function correctness of given circuit (this kind of 

simulation is also called cycle-based simulation). It is the most effective for the {L, H} signal model. Its 

advantage is direct usability of machine instructions for Boolean operations and bit-wise logic 

operations, which speeds up the simulation. 

The event-driven simulation is highly efficient as it evaluates gates only when necessary. An event is 

a switching (i.e. a change) of a signal value. An event-driven simulator monitors occurrences of 

events to determine which logic elements to evaluate. It can handle any delay model by means of a 

mechanism called event scheduler.  

Event scheduler is a process responsible for registering events and executing them when their time 

comes. One of the possible implementations of the scheduler is by means of a priority queue. The 

priority queue in this case is a data structure, which consists of several queues, each for different 

priority. The individual queues are classical FIFO queues, i.e. the first element inserted into the queue 
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will be the first one removed from it. When a new element a with priority p is to be inserted into the 

priority queue then the queue for the priority p is selected and a is inserted into its rear. When there 

is a request to remove an element then a nonempty queue with highest priority is selected and the 

element is removed from its front. In the event scheduler these priorities are time instants when 

events should occur and members of the queue are pairs (𝑎, 𝑣𝑎
′ ), where 𝑎 is a signal and 𝑣𝑎

′  is a new 

value that is assigned to 𝑎 by the event (Figure 11). The lowest time value is the highest priority. Use 

of the priority queue event scheduler is illustrated by Example 6. 

 

Figure 11. An example of a priority queue with two queues used for an event scheduler 

Example 6. Event-driven simulation of multiplexer 

In this example we show how the priority queue can be used for an event-driven simulation of the 2-

to-1 multiplexer from Figure 10 a). We will use the nominal delay timing model with transport delays 

as in Table 2. We assume that the input signal A is always H, B is always L and X is initially H and at 

time=60 changes to L (Figure 12). The diagram in Figure 12 also shows how other signals of the 

multiplexer change with respect to the inputs and transport delays (for the output and internal 

signals we assume the value u, indicated by a dashed line).  

Element INV1 AND1 AND2 OR1 

Transport delay 10 15 15 15 
 

Table 2. Transport delays of gates of multiplexer. 
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Figure 12. Signals diagram of the multiplexer 

 

We start the simulation by inserting all the events we know at the beginning into the priority queue. 

After this the queue will look like in Figure 13. 

𝑡0 𝑎, 𝑣𝑎
′  𝑏, 𝑣𝑏

′  

𝑡1 𝑐, 𝑣𝑐
′ 
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Figure 13. Priority queue before start of the simulation 

Then we remove and process the events from the priority queue one by one. Processing the event 

means removing it from the queue and evaluating how and when the change of a signal the event 

represents changes other signals in the system. These changes are inserted as new events into the 

priority queue. To make the simulation more effective this is only performed for events that really 

change given signals. Development of the priority queue during the simulation is shown in Figure 14.  
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Figure 14. Priority queue after processing all events for given time instant 

At time=100 the priority queue is emptied because no new events are generated and the simulation 

ends. We can see that the occurrence of the event (Y,u) doesn’t produce any new event. This is 

because the value of the signal Y remains the same (u). Another reason, which is a sufficient one, too, 

is that the signal Y is not an input of any element (the same is true for the event (Y,H) at time=100).  
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IV Pseudo-random Numbers 
As we mentioned earlier, the discrete-event systems are often stochastic, so in their simulation we 

use random, or more exactly pseudo-random, numbers.  Random numbers are very useful in various 

areas related to computers and information technologies. For example, in numerical analysis we can 

use them to solve complicated integrals by so-called Monte Carlo methods. In cryptography they are 

used for several purposes, such as for generation of keys that encrypt and decrypt data. Their place 

in software development is in testing, to generate testing data. In simulation we use them as a 

source of randomness in a model. This chapter can be regarded as an excerpt from (Perros, 2009), 

where the reader can find more details about pseudo-random numbers and their generators. 

It makes no sense to talk about an individual random number, without any relation to other 

numbers. Instead we talk about random numbers in the context of some sequence of random 

numbers. The word “random” here means that there seems to be no relation between members of 

the sequence and these members follow some theoretical or empirical probability distribution.  

According to a method of their generation random numbers can be of two kinds – true random 

numbers and pseudo-random numbers. 

The true random numbers have to be generated by a completely unpredictable and non-

reproducible source. Usually, physical phenomena are used as generators. For example a radioactive 

source, a thermal noise from a resistor or a semi-conductor diode or a human computer interaction 

processes, such as mouse or keyboard use. They are very useful in cryptography. 

The pseudo-random numbers are numbers generated by some algorithm, i.e. in a deterministic way. 

This means that given the same starting value, called seed, the algorithm will always generate the 

same sequence. This determinism is not good for cryptography as an attacker can find out the way in 

which numbers are generated and reproduce it. However it is desirable for software testing or 

simulation, because we can easily replicate experiments. The word “pseudo” means that these 

numbers are not really random but seem to be random. The pseudo-random number generators, i.e. 

algorithms that generate these numbers, usually work in such a way that they give us next member 

of a sequence of pseudo-random numbers and these numbers are uniformly distributed. Uniformly 

distributed means that all possible values can occur with the same probability. 

The term pseudo-random number is typically reserved for random numbers that follow uniform 

distribution on the interval < 0,1 >. All numbers that follow another distribution or are from 

another interval are called random variates or stochastic variates.  

IV.1 Probability Distributions   
In the previous section we said that members of a sequence of random numbers follow some 

theoretical or empirical probability distribution. At this place we recall some basic facts from the 

probability theory about what defines these distributions. 

The probability that a value of some real-valued random variable 𝑋 is smaller than some real number 

𝑥 is denoted as  

Pr(𝑋 ≤ 𝑥). 



28 
 

There are two functions that characterize a probability distribution – the cumulative distribution 

function (cdf) and the probability density function (pdf). 

The cumulative distribution function (cdf), denoted 𝐹𝑋(𝑥) or just  𝐹(𝑥), is defined as  

𝐹𝑋(𝑥) = Pr (𝑋 ≤ 𝑥). 

Then the probability that a value of 𝑋 will be from some interval (𝑎, 𝑏 > is  

Pr(𝑎 < 𝑋 ≤ 𝑏) = 𝐹𝑋(𝑏) − 𝐹𝑋(𝑎) 

Probability of an exact value is always zero, i.e. Pr(𝑋 = 𝑎) = 0. 

The probability density function (pdf), denoted 𝑓𝑋(𝑥) or just 𝑓(𝑥),  describes the relative likelihood 

for this random variable to have a given value. In this case the probability that a value of 𝑋 will be 

from some interval (𝑎, 𝑏 > can be computed as 

Pr(𝑎 < 𝑋 ≤ 𝑏) = ∫ 𝑓(𝑢) 𝑑𝑢
𝑏

𝑎

 

So, the relationship between pdf and cdf is 

𝐹(𝑥) = ∫ 𝑓(𝑢) 𝑑𝑢
𝑥

−∞

 

IV.2 Generators 
The pseudo-random number generators are algorithms that generate sequences of pseudo-random 

numbers. They usually work on demand, i.e. they generate next number of a sequence when asked. 

The first number or first numbers of the sequence must be given and they are called seed. The 

generators are deterministic, so for the same seed the generator will always generate the same 

sequence. Numbers generated by them have to be 

 uniformly distributed, 

 statistically independent, 

 reproducible and 

 non-repeating for any desired length. 

One of very important properties of generators is a period, which is a number of successively 

generated pseudo-random numbers after which the sequence starts repeating itself. 

IV.2.1 Middle-square Method 

This is the oldest generator, invented by the computer science pioneer John von Neumann. It is very 

simple and consists of two steps: 

1. Take the square of previously generated number. 

2. Extract the middle digits. 

It is not recommended for practical use, because it is slow and has a very short period. 



29 
 

IV.2.2 Congruential Methods 

These methods are very popular, because they are simple, fast and produce statistically acceptable 

numbers, at least for the simulation. They follow the general formula, where the 𝑖 + 1th member of 

the sequence (i.e. 𝑥𝑖+1) is computed from the previous members as 

𝑥𝑖+1 = (𝑓(𝑥𝑖, 𝑥𝑖−1, … ))𝑚𝑜𝑑 𝑚  

And individual methods differ in how many previous members of the sequence they use to compute 

an actual member 𝑥𝑖+1 and in how the function 𝑓is defined. We say that a congruential generator 

has a full period if its period is equal to 𝑚.  

Examples of congruential generators are quadratic congruential generator 

𝑥𝑖+1 = (𝑎1𝑥𝑖
2 + 𝑎2𝑥𝑖−1 + 𝑐)𝑚𝑜𝑑 𝑚  

and linear congruential generator 

𝑥𝑖+1 = (𝑎𝑥𝑖 + 𝑐)𝑚𝑜𝑑 𝑚 

The linear generator generates numbers between 0 and 𝑚 − 1. If we want to generate numbers 

from < 0,1 >, we divide each generated number by 𝑚 − 1 (this is also true for other types of 

generators). The period of the linear generator is full when 

 𝑚 and 𝑐 have no common divisor, 

 𝑎 − 1 is divisible by all prime factors of 𝑚 and 

 𝑎 − 1 is a multiple of 4 if 𝑚 is a multiple of 4. 

When implementing the linear generator an optimisation in the form of setting 𝑚 to the size of used 

register is often used. Then modulo operation is automatically performed by overflow of the register. 

Other examples of generators from this family are Tausworthe generators. They are additive 

congruential generators with 𝑚 = 2. 

IV.2.3 Composite Generators 

Composite generators are generators that combine two (or more) separate generators, usually 

congruential. They can have good statistical properties, even if the generators used are bad. A 

generator composed from two generators G1 and G2 can proceed as follows: 

1. Generate a sequence 𝑥1 …𝑥𝑘 using generator G1  

2. Generate an integer 𝑟, 𝑟 ∈ 1,… , 𝑘 using generator G2  

3. Return 𝑥𝑟 

4. Generate a new random number using G1 and replace 𝑥𝑟 in the sequence with it. 

5. Go to step 2. 

IV.2.4 Lagged Fibonacci Generator 

The Lagged Fibonacci Generators or LGF, are based on the Fibonacci sequence 

𝑥𝑛 = 𝑥𝑛−1 + 𝑥𝑛−2, 𝑥0 = 0, 𝑥1 = 1 

They have a general form 
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𝑥𝑛 = (𝑥𝑛−𝑗 𝑜𝑝 𝑥𝑛−𝑘) 𝑚𝑜𝑑 𝑚 

where 𝑜𝑝 is an algebraic operation (+,−,∗,…) and 0 < 𝑗 < 𝑘. 

Their advantages are very good statistical properties, efficiency only a bit lower than of the 

congruential generators and parallelization possibilities. The biggest disadvantage is high sensitivity 

on the seed, so the seed have to be carefully selected to obtain good statistical properties. 

Commonly used choice for 𝑜𝑝 is addition. The parameter  𝑚 is usually computed as 𝑚 = 2𝑀 and 

good choices for 𝑗, 𝑘 and 𝑀 are 

 𝑗 = 5, 𝑘 = 17,𝑀 = 31 and 

 𝑗 = 24, 𝑘 = 55,𝑀 = 31. 

IV.2.5 Mercenne Twister 

This generator is a variation on a two-tap generalised feedback shift register, which in fact is a LFG 

with 𝑥𝑜𝑟 as 𝑜𝑝. Its period is a Mersenne prime. A Mersenne prime is a prime number of the form 

𝑀𝑛 = 2𝑛 − 1. 

Mercenne Twister generates a sequence of bits, which is grouped into blocks (32-bit) and each block 

blocks is considered to be a random number. It has very good statistical properties and its maximum 

period is very high - 219937 − 1. Its disadvantages are complex implementation and sensitivity to 

poor initialisation. Complete description of this algorithm can be found in (Perros, 2009). 

IV.3 Statistical Tests for Generators  
They are used to check the output of a pseudo-random number generator statistically and belong to 

the statistical hypothesis testing. One of the most fundamental test is the frequency test. It is 

considered fundamental, because if a generator fails it, it will probably fail other tests, too. It checks 

whether there is approximately the same number of occurrences of each digit in the generated 

sequence. The serial test is similar to the frequency test but for pairs of digits. The Autocorrelation 

test is based on the fact that if the sequence 𝑠 of 𝑛 bits, created by a generator, is random, then it is 

different from another bit string obtained by shifting the bits of 𝑠 by 𝑑 positions. The Runs test is 

used to test the assumption that the pseudo-random numbers are independent of each other 

(mutually independent). It checks whether counts of ascending and descending runs follow a certain 

distribution. It belongs to the diehard tests. Finally, the Chi-squared test for goodness of fit checks 

whether a sequence of pseudo-random numbers in < 0,1 > is uniformity distributed. 

IV.4 Generation of Random Variates 
The generators mentioned above produce uniformly distributed numbers from the interval < 0,1 >. 

To get random variates that follow other distributions we need to transform them. There are several 

methods for transformation and in this section we describe two of them: inverse transform sampling 

and rejection method. 

IV.4.1 Inverse Transform Sampling  

This method uses inversed cumulative density function (cdf) of the target distribution (i.e. the 

distribution we want the random variates to follow). This limits its usability to distributions which cdf 

can be analytically inverted.  
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If 𝑟, 𝑟 ∈< 0,1 > is a generated pseudo-random number then a random variate 𝑥 following a random 

distribution with cdf 𝐹 can be computed as  

𝑥 = 𝐹−1(𝑟). 

Examples of the sampling are in Table 3. 

sampling 

from 

Uniform distribution from interval 

< 𝑎, 𝑏 >. 

Exponential distribution with rate 

parameter 𝜆. 

cdf 𝐹(𝑥) = {

0 𝑓𝑜𝑟 𝑥 < 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
𝑓𝑜𝑟 𝑎 ≤ 𝑥 < 𝑏

1 𝑓𝑜𝑟 𝑥 > 𝑏

 𝐹(𝑥) = 1 − 𝑒−𝜆𝑥 

random 

variate 
𝑥 = 𝑎 + (𝑏 − 𝑎)𝑟 𝑥 = −

1

𝜆
ln 𝑟 

 

Table 3. Transport delays of gates of multiplexer. 

IV.4.2 Rejection Method 

The rejection method can be used when 𝑥 has a finite range (i.e 𝑥 ∈< 𝑎, 𝑏 >) and the probability 

density function (pdf) 𝑓(𝑥) of the target distribution is bounded on < 𝑎, 𝑏 >). The method uses a pdf 

with normalized range, which is the function 

𝑓𝑛𝑜𝑟𝑚(𝑥) = 𝑐 ∙ 𝑓(𝑥), 

where 𝑐 is a constant such that ∀𝑥(𝑎 ≤ 𝑥 ≤ 𝑏): 𝑐𝑓(𝑥) ≤ 1. Then the transformation itself proceeds 

as follows: 

1. Generate a pair of random numbers (𝑟1, 𝑟2), 𝑟1 ∈< 0,1 >, 𝑟2 ∈< 0,1 >. 

2. If 𝑟2 ≤ 𝑓𝑛𝑜𝑟𝑚(𝑎 + (𝑏 − 𝑎)𝑟1) go to step 3, otherwise go to step 1. 

3. Return 𝑥 = 𝑎 + (𝑏 − 𝑎)𝑟1 as the random variates. 
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V Queuing Systems 
Queuing systems are the subject of so-called queuing theory that is dedicated to the mathematical 

study of systems consisting of queues (i.e. waiting lines) and servers. There can be single queue 

queuing systems (Figure 15) with only one queue and one or more servers with the same parameters 

(i.e. with one service providing facility (Cassandras & Lafortune, 2008)) or queuing networks (Figure 

16) with multiple queues and servers connected together.  

 

Figure 15. Single queue queuing system 

 

 
 

(a) (b) 
 

Figure 16. Example of open (a) and closed (b) queuing network 

 

V.1  Single Queue Queuing System 
As its name suggests, a single queue queuing systems (Figure 15) consists of one queue and one 

service providing facility, which we simply call a service. There is also a population of customers, who 

arrive to the system, wait in the queue to be served by the service and leave the system after being 

served. 

The population of customers can be finite or infinite. The finite population means that the system 

will always serve the same limited number of customers, but not necessarily exactly the same 

customers. In the model it will look like the same customer enters the queue again after being served 

( 

Figure 17 a)) but in the real system they can be different individuals. This is because in models of 

queuing systems we usually do not deal with identity of customers, they are simply 

undistinguishable. A queuing system with finite population is closed. In the case of infinite 

population the number of customers that can possibly enter the system is unlimited and such 

systems are called open ( 

Queue
Service

Population of customers

arrival
output

(departure)
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Figure 17 b)). Of course, by customers we don’t only mean people. They can be tasks, jobs, 

processes, products, etc.  

 

 
 

(a) (b) 
 

Figure 17. Open (a) and closed (b) single queue queuing system 

The way in which customers enter given queuing system is mostly random and is defined by the 

arrival pattern, which specifies a random distribution of intervals between two adjacent arrivals of 

customers. Departure of customers is not treated in any specific way in most cases. 

V.1.1 Queue  

The queue is the part where customers wait to be served by the service. There are two important 

parameters of the queue: the maximum size of the queue, or queue capacity, and queuing discipline. 

The queue capacity is the maximum number of customers that may wait in the queue. In some 

theoretical models we assume an unlimited capacity. 

The queuing discipline defines the policy of adding and removing customers to and from the queue: 

 FIFO (First In is First Out). The classical queue, where the first customer that enters it is the 

first to be served. 

 LIFO (Last In is First Out). The queue in this case works as a stack. 

 SIRO (Serve In Random Order). There is no particular order of customers here, they are 

picked up randomly. 

 Priority Queue. This can be built from several ordinary queues, each for one priority. It has 

been already described in section III.2. 

V.1.2 Service 

The service represents an activity the customers are waiting for. To serve a customer takes some 

time, so one of service parameters will be its duration. As in the case of arrival it is mostly random 

and is defined by the service pattern as a random distribution of service duration. 

Second important parameter is the number of servers, which defines how many customers can be 

served at once. On the basis of this parameter we distinguish 

 single-channel systems with one server and 

 multi-channel systems with more than one server. 

The maximum number of customers being served simultaneously together with the queue capacity 

define the system capacity of given queuing system. 

customers

arrival
customers

departure

customers
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V.1.3 Kendall’s Notation  

In queuing theory there is a standard way to describe queuing systems, created by D. G. Kendall and 

therefore called Kendall’s classification or Kendall’s notation. The original notation, proposed by 

Kendall in 1953 consisted of three factors (A/B/s) but has been later extended to six, A/B/s/q/c/p, 

where 

 A is the arrival pattern, 

 B is the service pattern, 

 s is the number of servers, 

 q is the queuing discipline, 

 c is the system capacity or queue capacity, 

 p is the population size, i.e. number of possible customers. 

There are some standard values for patterns A and B, for example 

 M - Poisson arrival distribution (exponential inter-arrival distribution) or an exponential 

service time distribution, 

 Em - Erlang distribution,  

 D - deterministic or constant value (also called degenerate distribution), 

 G - general distribution with a known mean and variance. 

For example, a queuing system denoted as M/M/1 has Poisson arrival distribution, exponential 

service time distribution, one server, a queue with FIFO or unspecified discipline and unlimited 

capacity and is open. 

V.2 Performance Measures 
When we design a model of a real system as a queuing system, we are usually interested in its 

performance with respect to use of some shared resource, represented by services. The standard 

performance measures are: 

 average waiting time, 

 expected number of waiting customers, 

 expected number of customers receiving service, 

 probability of an empty system, 

 probability of a full system, 

 probability of having an available server and 

 probability of having to wait a certain time to be served. 

For some types of queuing systems, such as M/M/1, these measures can be obtained analytically 

using the queuing theory. In other cases we have to use simulation. 
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VI Discrete Event Simulation with Coloured Petri Nets 
In this chapter we show how the Petri nets (PN) formalism can be used for modelling and 

simulation of discrete – event systems (i.e. discrete-state event-driven systems). PN are a formal 

language that is able to naturally express behaviour of non-deterministic, parallel and concurrent 

systems. One of their biggest advantages is an easy to understand graphical notation. They also 

offer analytical methods, which, for example, allow to derive invariant properties from the 

structure of the net. The original PN formalism has been introduced in the PhD thesis (Petri, 

1962) by Carl Adam Petri. As the name of the thesis suggests, his intention was to design 

formalism able to describe systems consisting of cooperating (communicating) finite automata. 

Since its introduction in 1962 the PN formalism has been modified and extended in many ways by 

various researchers, resulting in many types of PN with different expressional and modelling 

power. A good introduction to various types of PN can be found in (Reisig & Rozenberg, 1998a-b). 

Basic types of Petri nets are also well-covered in (Reisig, 2013). 

The Place-Transition Nets (P/T nets) are considered a basic type of Petri nets nowadays and they 

are very close to the C.A. Petri’s original concept of communicating sequential automata. 

However, P/T nets are not very useable for specification of simulation models of discrete-event 

systems. This is primary because they lack any means for (convenient) representation of data and 

do not incorporate timing. Therefore, PN types with greater expressional and modelling power 

are required. For this book we have chosen Coloured Petri nets (CPN) since they are well covered 

in literature (Jensen, 1994), (Jensen, 1997a-c), (Jensen & Kristensen, 2009), have very good 

support in the form of the CPN Tools software tool (http://cpntools.org/) and are suitable for 

simulation-based analysis (Jensen et.al, 2007), (Jensen & Kristensen, 2009). Definitions of CPN, 

used in this chapter, have been taken from the aforementioned books and papers by Kurt Jensen.  

The Petri net models shown here have been created using the CPN Tools software. 

VI.1 Basic Concepts 
We start our discussion on Petri nets (PN) with an informal introduction to their basic concepts, 

namely how they look and behave and how they allow us to describe nondeterministic and 

concurrent behaviour. In general, a Petri net has a form of an oriented bipartite graph. The two 

types of vertices are places and transitions. Places have the shape of circles or ellipses and 

represent state of the net. Transitions have the shape of bold lines or rectangles and represent 

actions or events that can change state of given PN. Places and transitions are connected by 

directed arcs. Arcs can connect only vertices of different kind, so we will never have an arc 

between two places or two transitions. Places hold objects, called tokens and by the nature of 

these tokens we distinguish two basic classes of Petri nets: 

1. Low-level Petri nets. Here, tokens are all the same, we cannot distinguish between them. 

P/T nets belong to this class. Undistinguishable tokens are usually shown as black dots 

inside a place they occupy.  In CPN we can also have these types of tokens, in current 

(2015) version of CPN Tools they are denoted “()”. 

2. High-level Petri nets. Tokens can have different values. Usually, we also specify a type of 

given token and often it is required that one place only holds tokens of one type. CPN 
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belong to this class. The word “coloured” in their name refers to the fact that tokens 

have different colours and are not just undistinguishable black dots. 

Number and values of tokens in some place 𝑝 of a Petri net is called marking of 𝑝 and is denoted  

𝑀(𝑝). If we fix ordering of places of the net, say to 𝑝1, 𝑝2, … , 𝑝𝑛, we can write the marking of the 

whole net as a vector 𝑀 = (𝑀(𝑝1),𝑀(𝑝2), … ,𝑀(𝑝𝑛)). Markings represent states of PN. We 

distinguish between different markings by using lower and upper indices, for example 

𝑀′, 𝑀1′, 𝑀2. 𝑀0 is usually reserved for the initial marking, that is the marking, which the net has 

when it begins its computation. Computation of PN is a sequence of firings or executions of its 

transitions. A transition 𝑡 can be fired (executed) if there are enough tokens of required values in 

pre-places of 𝑡. When 𝑡 fires, it removes tokens from its pre-places and adds tokens to its post-

places. This means that the net reaches a new marking. Pre-places of 𝑡 are places from which 

there is an arc to 𝑡 and post-places of 𝑡 are places to which there is an arc from 𝑡. Values and 

number of tokens that are required for firing and are removed and added by firing of 𝑡 are 

defined by arc expressions, associated to arcs from and to 𝑡. Computations of PN can be written 

in the form of occurrence sequences, which record transitions fired and markings reached. How 

various basic types of behaviours can be modelled by Petri nets and how exactly enabling and 

firing of transitions proceed is shown in following examples. While we use CPN here, for the sake 

of simplicity we restrict ourselves to what is also possible in simpler types, such as P/T nets. That 

is, we use only undistinguishable tokens. 

Example 7. Nondeterminism 

In Figure 18 we can see a simple Petri net that describes a process with two branches. Only one 

of these branches can be executed and it is chosen non-deterministically which one it will be. The 

net has 7 places, p1,p2,…,p7, and 7 transitions. The first transition, act1, represents some 

action that occurs at the beginning of the computation of the net. Transitions choice1, 

altAct2_1 and  altAct3_1 belong to the first branch and choice2, altAct2_2 and  

altAct3_2 to the second branch. 

 

Figure 18. Petri net with two non-deterministic branches of process execution in its initial 

marking 𝑀0  

Each place of the net can hold only undistinguishable tokens, i.e. tokens of the type UNIT, which 

has only one value - “()”. Brackets are used for this value, because they resemble a circle. Types 

in CPN are also called colour sets and they are usually written below the places. Initial marking of 

the places of the net is defined by initialisation expressions. We have such an expression in the 
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outer upper right corner of p1 and it says “()”. This means that there is one token (of value 

“()”) in p1 in the initial marking 𝑀0 . Formally, we write this as  𝑀0 (𝑝1) = 1`() or  𝑀0 (𝑝1) =

(). There are no initialisation expressions for other places, so there are no tokens in them in  𝑀0 . 

If we fix ordering of places to p1,p2,…,p7 we can write 

 𝑀0 = (1`(), ∅, ∅, ∅, ∅, ∅, ∅) ( 50 ) 

where ∅ means “no tokens”. Figure 18 shows the net in this initial marking. The number of 

tokens in 𝑝1 is shown in a green circle, followed by a green rectangle with an expression 

describing the marking in detail. Here it is “1`()”, meaning “one token of the value ()”. The 

transition act1 is enabled in  𝑀0  as there is enough tokens in its pre-place p1. Enough means 

one token since the arc expression of the arc from 𝑝1 to 𝑎𝑐𝑡1 is “()”, which is the same as  

“1`()”. Enabling of act1 is highlighted by a green frame in Figure 18. Firing of act1 in 

 𝑀0 changes the marking to  𝑀1 , 

 𝑀1 = (∅, 1`(), ∅, ∅, ∅, ∅, ∅), ( 51 ) 

and enables transitions 𝑐ℎ𝑜𝑖𝑐𝑒1 and 𝑐ℎ𝑜𝑖𝑐𝑒2 (Figure 19). Formally we write 

 𝑀0 [act1> 𝑀1 . ( 52 ) 

 

Figure 19. Net from Figure 18 in the marking 𝑀1  

As we can see, firing of act1 removed one token from p1 (because the arc from p1 to act1 

has the arc expression “()”) and added one token to p1 (because the arc from act1 to p2 has 

the arc expression “()”, too). In 𝑀1  both choice1 and choice2 are enabled, but only one of 

them can be fired. This is because there is only one token in p2 and when one of these 

transitions fires the token is consumed and there is no one left for the other transition.  

One may ask how do we determine which transition will be fired in  𝑀1 . The answer is by no 

means, one of the enabled transitions is chosen non-deterministically and fired. The firing of 

choice1 results in  𝑀2 ( 53 ) and of choice2 in  𝑀4 ( 54 ). 

 𝑀2 = (∅,∅, 1`(), ∅, ∅, ∅, ∅) ( 53 ) 

 𝑀4 = (∅,∅, ∅, 1`(), ∅, ∅, ∅) ( 54 ) 

 

The net in these markings is also shown in Figure 20. 
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(a) 

 

 

(b) 

Figure 20. Net from Figure 18 in the marking 𝑀2 (a) and 𝑀4 (b) 

Both choices eventually lead to the same marking  𝑀6 ( 55 ), shown in Figure 21. There is no 

enabled transition in  𝑀6 and we call such markings deadlocks. However, in this case a 

designation final marking is more appropriate.  

 𝑀6 = (∅,∅, ∅, ∅, ∅, ∅, 1`()) ( 55 ) 

 

 

Figure 21. Net from Figure 18 in the marking 𝑀6  

To conclude, there are only two possible occurrence sequences in this net: ( 56 ), which chooses 

the first branch and ( 57 ), which chooses the second one. 

  𝑀0 [act1> 𝑀1 [choice1> 𝑀2 [altAct2_1> 𝑀3 [altAct3_1> 𝑀6 ( 56 ) 

  𝑀0 [act1> 𝑀1 [choice2> 𝑀4 [altAct2_1> 𝑀5 [altAct3_1> 𝑀6 ( 57 ) 
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Markings  𝑀0, 𝑀1, 𝑀2,𝑀4,  𝑀6 are as in ( 50 ), ( 51 ) and ( 53 ) to ( 55 ) and 𝑀3,  𝑀5 are 

 𝑀3 = (∅,∅, ∅, ∅, 1`(), ∅, ∅),  𝑀5 = (∅, ∅, ∅, ∅, ∅, 1`(), ∅). 

□ 

Example 8. Parallelism         

The net in Figure 22 is very similar to the one from the previous example. Again, it is about a 

process that is split into two branches. What is different is that here these two branches, 

represented by transitions prlAct1 and prlAct2 and adjacent places, can be executed in 

parallel. 

 

Figure 22. Petri net, representing a process with two parallel branches of process execution, 

shown in its initial marking 𝑀0 = (1`(), ∅, ∅, ∅, ∅, ∅) 

This difference is caused by the fact that firing of fork removes one token from p1 and adds 

one token to p2 and one to p3, so in 𝑀1 = (∅, 1`(),1`(), ∅, ∅, ∅) we can fire both prlAct1 and 

prlAct2 (Figure 23). 

 

Figure 23. Petri net from Figure 22 in marking 𝑀1 = (∅, 1`(),1`(), ∅, ∅, ∅) 

There are three possible occurrence sequences we can fire in M1: prlAct1 prior to prlAct2 

( 58 ) or vice versa ( 59 ) or both transitions at once in one step ( 60 ).  

 𝑀0[fork> 𝑀1 [prlAct1> 𝑀2 [prlAct2> 𝑀4 [join> 𝑀5 ( 58 ) 
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 𝑀0[fork> 𝑀1 [prlAct2> 𝑀3 [prlAct1> 𝑀4 [join> 𝑀5 ( 59 ) 

 𝑀0[fork> 𝑀1 [prlAct1,prlAct2> 𝑀4 [join> 𝑀5 ( 60 ) 

 

In ( 58 ) to ( 60 ) new markings are  𝑀2 = (∅, ∅, 1`(),1`(), ∅, ∅),  𝑀3 = (∅, 1`(), ∅, ∅, 1`(), ∅) and 

 𝑀4 = (∅,∅, ∅, 1`(),1`(), ∅). As you can see, in this net we have markings with more than one 

place possessing tokens, namely 𝑀1 to 𝑀4. 

□ 

The previous two examples demonstrated how to model non-deterministic and parallel 

behaviour by Petri nets. They have two things in common. First, they don’t have any concrete 

meaning. And second, they represent processes, which proceed from some initial state (marking) 

to some final state. In the next example we have a net with cyclic behaviour. That is, a net, which 

is required to run forever. Many real systems, such as network protocols or processes inside 

operating systems, operate in this way and Petri nets are mostly used to describe these kinds of 

systems. This is why a marking in which no transition can be fired is usually called deadlock 

(negative meaning) and not final state (positive meaning). The next two examples describe 

systems with cyclic behaviour and they also show how to model synchronisation between 

concurrent processes. 

Example 9. Mutual exclusion 

The net in Figure 24 represents a simple solution to a problem known from operating systems 

domain as mutual exclusion. The problem is formulated as follows: We have two processes, say 

𝑝1 and 𝑝2. Each of these processes can operate inside or outside a critical area. The critical area 

is some shared resource (e.g. a memory), which requires that only one process can access it at 

once. So, when 𝑝1 is inside the area, 𝑝2 has to be outside and vice versa. 

 

Figure 24. Petri net representing mutual exclusion of two processes in its initial marking 𝑀0 

The part of the net left to the place semaphore belongs to the first process, 𝑝1. Token in 

p1_outOfCritical means that 𝑝1 operates outside of the critical area, token in 

p1_inCritical means it operates inside. The firing of p1_enter represents the event of 𝑝1 

entering the critical area, the firing of p1_leave the event of leaving the area. The part right to 

the place semaphore belongs to 𝑝2 and operates in similar way. The place semaphore and 
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adjacent arcs provide interlocking mechanism that prevents 𝑝1 and 𝑝2 to enter the area at once. 

Processes 𝑝1 and 𝑝2 are concurrent, because they run simultaneously and compete for access to 

shared resources. 

The net has only three reachable markings. If we fix place ordering to p1_outOfCritical, 

p1_inCritical, semaphore, p2_inCritical, p2_outOfCritical, the markings 

are 

  𝑀0 = (1`(), ∅, 1`(), ∅, 1`()) – initial marking, both processes out of the critical area, 

  𝑀1 = (∅, 1`(), ∅, ∅, 1`()) – 𝑝1 inside the critical area and 

  𝑀2 = (1`(), ∅, ∅, 1`(), ∅) – 𝑝2 inside the critical area. 

Since there is no deadlock, there are infinitely many occurrence sequences, but they will always 

be composed of these four sequences: 

  𝑀0 [p1_enter> 𝑀1 - 𝑝1 enters the critical area, 

  𝑀1 [p1_leave> 𝑀0 - 𝑝1 leaves the critical area,  

  𝑀0 [p2_enter> 𝑀2 - 𝑝2 enters the critical area and 

  𝑀2 [p2_leave> 𝑀0 - 𝑝2 leaves the critical area. 

For example, a more complicated occurrence sequence can be: 

 𝑀0[p1_enter> 𝑀1 [p1_leave> 𝑀0 [p2_enter> 𝑀2 [p2_leave> 𝑀0[p2_enter> 𝑀2 

□ 

In the examples above we explored already created PN models. The next one shows how to 

design a PN model of more complicated process step by step. 

Example 10. Manufacturing process 

Suppose that we have to design a Petri net model of a manufacturing process for a 

manufacturing site, consisting of three parts: 

 A parts stack. The stack holds sets of parts; each set is used to assembly one product. The 

stack has a capacity of 100 sets and can be refilled by packages of 20 sets. At the 

beginning the stack is empty. 

 An assembly line with one assembly station.  The line takes a set of parts from the parts 

stack, moves it to the assembly station, the station assemble a product from the set of 

parts and the assembled product is moved to the end of the line. After the product is 

removed a new set of parts can be used to make a new product. At the beginning the line 

is empty and ready to take a new set of parts. 

 A crane that moves finished products from the end of the line to a storage box. The crane 

has north/south orientation with the end of the line on the north end and the box on the 

south end. At the beginning the crane is on the south end and is not holding anything and 

the box is empty. 
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We will start with designing a Petri net that represents the assembly line part of the 

manufacturing process. The net models it as a sequential cyclical process and is shown in Figure 

25. 

 

 

Figure 25. Assembly line part as a Petri net in its initial marking 

Places and transitions of the net have the following meaning: 

 lineEmpty – the assembly line is empty (if there is a token in this place). 

 movingParts – the line is moving parts from its beginning to the assembly station. 

 assembling – a product is being assembled from the parts at the assembly station. 

 movingProduct – the line is moving the assembled product from the station to the 

end of the line. 

 

 takeParts – the line takes a set of product parts and starts moving them towards the 

assembly station (when this transition fires). 

 startAssembly –  the line stops moving as the parts set reaches the station and starts 

the product assembly.  

 finishAssembly –  the line finishes the product assembly and starts moving the 

product towards  its end. 

 removeProduct – the line stops moving as the product reaches its end and the 

product is removed. 



43 
 

 

Figure 26. Crane part as a Petri net in its initial marking 

In a similar way we design a net for the crane (Figure 26). Here the meaning of places and 

transitions is: 

 waitS_empty – the crane is waiting above the storage box (i.e. in its south position) 

without holding anything (if there is a token in this place). 

 movingS2N – the crane is moving from the box to the end of the production line (i.e. to 

its north position) without holding anything. 

 waitN_empty – the crane is waiting above the end of the production line without 

holding anything. 

 waitN_wProd – the crane is waiting above the end of the production line holding an 

assembled product. 

 movingN2S – the crane is moving from the end of the production line to the box with 

the product. 

 waitS_wProd – the crane is waiting above the storage box holding the product. 

 

 startMoveS2N – the crane starts moving from south to north (when this transition 

fires). 

 stopMoveS2N – the crane stops moving from south to north after it reaches the end of 

the line. 

 pickUpProduct – the crane picks up an assembled product from the end of the line. 

 startMoveN2S – the crane starts moving from north to south.  

 stopMoveN2S – the crane stops moving from north to south after it reaches the box. 

 putDownProduct – the crane drops the product to the box. 

Now we have two nets and we need to put them together into one net. From the specification of 

the process it is clear that to empty the line we have to pick up the finished product by the crane. 

So, we combine the nets by merging the removeProduct transition from the first net and the 
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pickUpProduct transition from the second net. We name the resulting transition 

pickUpProduct. The next step is to add places and transitions for the parts stack. Optionally, 

we can also add a place which will hold finished products and thus represent the storage box. 

 

Figure 27. Petri net of the whole manufacturing process. 

The final PN model of the manufacturing process can be seen in Figure 27. The merged transition 

pickUpProduct is rendered in brown and the place ProductsCompleted for the storage 

box is in green. The blue part models the parts stack together with package delivery activity. The 

place PartsStack holds tokens representing parts sets, one token for each set. The number of 

tokens in PartsStackFreeCap is equal to the place left in the parts stack, so its initial 

marking is 100 tokens. The transition deliverPackage represents delivery of a package with 

20 parts sets. 

Places  PartsStack, PartsStackFreeCap and ProductsCompleted are different from 

other places in this net and the nets from previous examples, because they usually hold more 

than one tokens. So, they cannot be regarded as states (i.e. the system or its part is in a state 

represented by given place if the is a token in the place). Rather than that they are counters or 

can be seen as natural number variables. 

□ 
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In section II.3.6 we mentioned that the doctor’s waiting room system from Example 5 can be 

modelled as an event-driven system and that PN are a suitable language for this. So, in the final 

example of this section we show how such Petri net looks like. 

Example 11. Petri net for doctor’s waiting room 

Recall that the doctor’s waiting room system from Example 5 consisted of a room holding 

patients waiting to be called by a doctor. Number of patients in the room was a (discrete) state 

variable and there were two kinds of events, which occurrence was able to change the state: 

1. A patient arrives to the waiting room, which increases the number of patients by one. 

2. A patient leaves the waiting room, which decreases the number of patients by one. 

A Petri net model of this system will consist of one place (patients), which marking will be 

equal to the value of the state variable and two transitions, one (pArrival) for the first event 

and one (pCall) for the second. The graph of the net is shown in Figure 28.  

 

 

Figure 28. Petri net of the doctor’s waiting room system in its initial marking 

□ 

 

VI.2 Tokens with Values 
As we can see from the examples presented so far, the use of undistinguishable tokens can lead 

to really big models, even in the case of systems of an average size. For example, to extend the 

MuTex PN from Example 9 by an additional process we have to add two transitions (e.g. 

p3_enter, p3_leave) and two places (e.g. p3_outOfCritical, p3_inCritical). This 

is because the only way to distinguish between processes is to use separate places and 

transitions for each of them. However, if we use distinguishable, coloured, tokens, then we need 

only one place for the processes inside the critical area and one place for the processes outside 

the critical area. Of course, there is a cost of using distinguishable tokens: we have to define 

different types (colour sets) for places, constants and variables and use more complicated arc 

expressions. Sometimes it is also needed to use so-called guards for transitions, which are 

additional conditions for transition firing. A significant part of CPN is declarations, which defines 

colour sets, constants, variables and functions used in given net. In CPN Tools all declarations, 

expressions and predicates (e.g. transition guards) are written in CPN ML, which is a modification 

of a general-purpose functional programming language Standard ML (SML).  How exactly a high-

level version of the mutual exclusion PN can look like is shown in Example 12. This example and 

Example 13 also introduce and explain some related terms, namely multiset, binding, binding 

element and step. 
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Example 12. MuTex as CPN 

The graph of CPN for mutual exclusion of four processes is shown in Figure 29 a). Its structure is 

similar to a structure of a low-level PN for MuTex (as in Example 9) if only one process is involved. 

This time tokens of different values (colours) are used to represent individual processes. The 

tokens are from a colour set called PROCESSES, which is defined in the declarations of the CPN 

(Figure 29 b). The PROCESSES is an index colour set (this is specified by the keyword index), 

that is a colour set which individual members are identified by a common name (pr here) and an 

index value from given range. In the PROCESSES the range is from 1 to  prNo, where prNo is 

an integer constant set to 4. In the declarations we can also find a declaration of the colour set 

UNIT, which is equal to the build-in CPN ML type unit and a variable prc of the type 

PROCESSES. The variable is used in arc expressions.  

 

 

 

colset UNIT = 

unit; 

 

colset PROCESSES  

  = index pr with 

1..prNo; 

 

val prNo=4; 

 

var prc: 

PROCESSES; 

a) b) 

Figure 29. CPN for mutual exclusion of four processes in 𝑀0: graph (a) and declarations (b). 

The initial marking of the net is 

 𝑀0 = (1`pr(1)++1`pr(2)++1`pr(3)++1`pr(4), ∅, 1`()) 

provided that the order of places is outOfCritical, inCritical and semaphore. The 

expression 1`pr(1)++1`pr(2)++1`pr(3)++1`pr(4) defines a multiset with one occurrence of 

pr(1) , one occurrence of pr(2), one occurrence of pr(3) and one occurrence of pr(4). 

The “+ +” operator can be read as “and” or can be seen as a (multi)set union. A multiset is like 

a set with multiple occurrences of the same members allowed. Formal definition of multiset can 

be found in the next section. So, in 𝑀0 the place outOfCritical holds tokens for all 

processes and to put these tokens into the place, the initialisation expression 

PROCESSES.all() is used. The expression means “create a multiset that contains one 

occurrence of each member of the colour set PROCESSES.” The one undistinguishable token in 

semaphore means that a process can enter the critical area. 
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A process enters the critical area when the transition enter is fired and leaves it when leave is 

fired. But firing of these transitions is not that simple as in the previous nets. While the value of 

token removed or added from or to the semaphore is always the same ( () ), in the case of 

first two places it varies. The corresponding arc expressions consist of the variable prc, so the 

value of the token can be any value from PROCESSES. 

 

 

Figure 30. The net from Figure 29 in the next marking 𝑀1. 

When variables are present in the arc expressions, then there are usually various ways of firing 

corresponding transitions. So, it is not enough to say that a transition has been fired; we also 

have to add what values were assigned to the variables. In CPN terminology these assignments 

are called bindings. They are written in sharp brackets, for example < 𝑝𝑟𝑐 = 𝑝𝑟(1) >. A firing is 

then defined by a pair, consisting of a transition and a binding. The pair is called binding element 

and is written is round brackets, for example (𝑙𝑒𝑎𝑣𝑒,< 𝑝𝑟𝑐 = 𝑝𝑟(1) >). In occurrence 

sequences we can also use binding elements, like in the next one, which leads us from 𝑀0 to 

𝑀1(Figure 30) and back to 𝑀0: 

𝑀0 [(enter, <prc=pr(3)>) >  𝑀1  [(leave, <prc=pr(3)>) > 𝑀0 

□ 

It should be noted that provided all colour sets are finite, nets with undistinguishable tokens only 

(i.e. P/T nets) have the same expressional power as nets with coloured tokens (CPN). The “same 

expressional power” means that they can describe the same class of systems. Every CPN with 

finite colour sets can be unfolded to an equivalent P/T net, where we will have one place for each 

combination of token values that can appear in it and one transition for each binding.  CPN have 

the same expressional power as P/T nets, but they have greater modelling power, which means 

that it is easier to create, modify and understand CPN models than P/T net models. For example, 

to modify the MuTex net from Example 9 to capture mutual exclusion of 100 processes, we need 

to add 196 places, 196 transitions and 588 arcs. To do the same thing with the CPN from Example 

12 we just need to change the value of prNo to 100. Disadvantages of CPN are a need to use 

more complicated language and much more complicated formal analysis methods. 
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The second example shows two small CPN, where most of tokens have integer values, arc 

expressions are more sophisticated and transitions have guards. 

Example 13. Arc expressions and guards. 

 

 

 

colset UNIT = unit; 

 

colset INT = int; 

 

var v,x,y : INT; 

 

a) b) 

Figure 31. A CPN in 𝑀0: graph (a) and declarations (b). 

The first net, consisting of two transitions, t1 and t2, and four places, is shown in Figure 31. 

Place p3 holds undistinguishable tokens (i.e. of colour set UNIT), tokens in all other places have 

integer values (colour set INT). The transition t1 can fire if and only if there is at least one token 

with a value greater than 0 in p1. The constraint on the token value is expressed by the guard 

[v>0]. Firing of t1 removes one token of chosen value from p1 and add two tokens of the 

same value and one token of value 4 to the place p4. In the initial 

marking 𝑀0 = (1`0++1`1++8`3, 5`1, ∅, ∅) (ordering of places is from p1 to p4) the transition 

t1 can fire with binding  < 𝑣 = 1 > or < 𝑣 = 3 >. The expression < 𝑣 = 0 > is not even 

considered a binding of t1, because it doesn’t satisfy the guard [v>0]. The result of firing 

(t1,<v=3>) is  𝑀1 = (1`0++1`1++7`3, 5`1, ∅, 2`3++1`4), shown in Figure 32 a). 

  

a) b) 

Figure 32. The net from Figure 31 in the next marking  𝑀1 (a) and the next next marking  𝑀2 (b). 
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There is only one binding for a firing of t2 in 𝑀0 or 𝑀1: <x=3,y=1>. And firing of the binding 

element (t2,<x=3,y=1>) in 𝑀1 results in 𝑀2 (Figure 32 b). The firing of t2 adds three tokens to 

p4: one of the value of x and two of the value equal to the sum of x and y. It also adds one 

token to p3. The complete occurrence sequence, shown in Figure 31 and Figure 32 is  

  𝑀0[(t1,<v=3>)> 𝑀1 [(t2,<x=3,y=1>)> 𝑀2 

The CPN theory allows us to fire more than one binding element at once, in so-called steps. These 

steps are in fact multisets over binding elements and are written in the same style as markings of 

places. For example, a step  𝑌1, 

𝑌1 = 1`(t1,<v=1>)++2`(t1,<v=3>)++1`(t2,<x=3,y=1>)) 

is enabled in 𝑀0 and its firing in 𝑀0 leads to 𝑀3 (we write  𝑀0 [𝑌1>𝑀3), where  

 𝑀3 = (1`0++5`3, 2`1, 1`(), 2`1++5`3++5`4) 

 

  

a) b) 

Figure 33. A graph of a CPN in 𝑀0 (a) and  𝑀1 (b). 

The second net (Figure 33) shows that values of tokens can define a number of other added and 

removed tokens. The net is shown before ( M0) and after ( M1) firing the step  𝑌, 

𝑌 = 1`(t1,<x=4,y=1>)) 

□ 

VI.3 Undistinguishable Tokens in CPN Tools 
In the examples above we used the UNIT colour set to represent the traditional 

undistinguishable tokens. But we can use any unique value to represent this kind of tokens, using 

UNIT is just the recommended way. In fact, UNIT was introduced just few years ago, before it a 

colour set named E holding a value e had been the standard. We can still find the E colour set in 

some examples shipped with CPN Tools, such as the distributed database. Even the handling of 

UNIT tokens has changed recently. From the version 4.0 of CPN Tools we can use a simplified 

notation in expressions: when only one token is used we just write “1” or nothing (in arc 
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expressions), when more than one token is used, we write number of tokens only (i.e. “5” 

instead of “5`()”). The simplified way was introduced to make inscription of the 

undistinguishable tokens similar to low-level Petri nets.  All three ways of handling 

undistinguishable tokens are illustrated in Figure 34. 

 

colset E = with e; 

 

colset UNIT = unit; 

 

colset UNIT = unit; 

(a) (b) (c) 

Figure 34. A CPN fragment with undistinguishable tokens: a version using the E colour set (a), a 

version with the UNIT colour set (b) and a version with the simplified notation for UNIT (c). 

Unless stated otherwise we use the notation as in Figure 34 b) in this chapter. 

 

VI.4 Definition of CPN Structure and Behaviour 
Above we introduced and explained terms related to Coloured Petri nets informally, using 

examples. In this section we provide basic formal definitions of CPN structure and behaviour, 

which correspond to the “official” definitions that can be found in (Jensen, 1994), (Jensen, 1997a-

c) or (Jensen & Kristensen, 2009). The definitions make use of the following symbols and 

notations: 

 ℕ – the set of natural numbers including zero,  

 𝔹 – the boolean type, 𝔹 = {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒},  

 𝑇𝑦𝑝𝑒(𝑣) – the type of a variable 𝑣, 

 𝑇𝑦𝑝𝑒(𝑒𝑥𝑝𝑟) – the type of an expression 𝑒𝑥𝑝𝑟, 

 𝑇𝑦𝑝𝑒(𝐴) – the type of variables in a set 𝐴, 𝑇𝑦𝑝𝑒(𝐴) = {𝑇𝑦𝑝𝑒(𝑣)|𝑣 ∈ 𝐴} 

 𝑉𝑎𝑟(𝑒𝑥𝑝𝑟) – the set of variables in an expression 𝑒𝑥𝑝𝑟, 

 𝑒𝑥𝑝𝑟<b> –the value obtained by evaluating an expression 𝑒𝑥𝑝𝑟 in a binding 𝑏. It is 

required that 𝑉𝑎𝑟(𝑒𝑥𝑝𝑟) ⊆ 𝑉𝑎𝑟(𝑏). 

We start with the definition of the multisets (Definition 1), which, as we have already seen, can 

be used to define markings, arc expressions and steps. 
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Definition 1. Multiset 

A multiset 𝑚 over a non-empty set 𝑆, is a function 𝑚:𝑆 → ℕ, represented as a formal sum ( 61 ).  

∑𝑚(𝑠)`𝑠

𝑠∈𝑆

 ( 61 ) 

 

By 𝑆𝑀𝑆 we denote the set of all multi-sets over 𝑆. The non-negative integers { 𝑚(𝑆)|𝑠 ∈ 𝑆 }  are 

the coefficients of the multi-set. 

 We say, that 𝑠 belongs to 𝑚 (𝑠 ∈ 𝑚) if and only if 𝑚(𝑠) > 0. An empty multiset is denoted as ∅. 

□ 

The classical sets can be seen as a class of multisets, where all coefficients are equal to one. 

Several operations can be defined for multisets. They are given in Definition 2. 

Definition 2. Operations for multisets. 

Let 𝑚,𝑚1,𝑚2 ∈ 𝑆𝑀𝑆 and 𝑛 ∈ ℕ. Then standard multiset operations and predicates are defined as 

follows: 

1. Addition. 𝑚1 + 𝑚2 = ∑ (𝑚1(𝑠) + 𝑚2(𝑠))`𝑠𝑠∈𝑆 . 

2. Scalar multiplication. 𝑛 ∗ 𝑚 = ∑ (𝑛 ∗ 𝑚(𝑠))`𝑠𝑠∈𝑆 . 

3. Size. |𝑚| = ∑ 𝑚(𝑠)𝑠∈𝑆 . 

4. Comparison. 𝑚1 = 𝑚2 ≡ ∀𝑠 ∈ 𝑆:𝑚1(𝑠) = 𝑚2(𝑠). 

   𝑚1 ≠ 𝑚2 ≡ ∃𝑠 ∈ 𝑆:𝑚1(𝑠) ≠ 𝑚2(𝑠) 

   𝑚1 ≤ 𝑚2 ≡ ∀𝑠 ∈ 𝑆:𝑚1(𝑠) ≤ 𝑚2(𝑠) 

   (≥,<,> are defined in the similar way.) 

5. Subtraction (defined only for 𝑚1 ≥ 𝑚2).  𝑚1 − 𝑚2 = ∑ (𝑚1(𝑠) − 𝑚2(𝑠))`𝑠𝑠∈𝑆 . 

□ 

A multiset 𝑚 with the size |𝑚| = ∞ is infinite, 𝑚 with the size |𝑚| < ∞ is finite. Multisets and 

their operations are illustrated by the next example. 

Example 14. Multisets and operations for multisets. 

Suppose that we have a set 𝑅, 

𝑅 = {2,4,5,8,9}. 

Then multisets from 𝑅𝑀𝑆 can be, for example, 𝑟1and 𝑟2: 

𝑟1 = 1`2 + 2`4 + 8`9, 𝑟2 = 3`2 + 2`4 + 2`5 + 3`8 + 11`9 ( 62 ) 

 

The multiset 𝑟1is a mapping 𝑟1: 𝑅 → ℕ, where 
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𝑟1(2) = 1, 𝑟1(4) = 2,  𝑟1(5) = 0, 𝑟1(8) = 0, 𝑟1(9) = 8 

Similarly, for 𝑟2 we have 

𝑟2(2) = 3, 𝑟2(4) = 2,  𝑟2(5) = 2, 𝑟2(8) = 3, 𝑟2(9) = 11. 

The size of 𝑟1is  

|𝑟1| = 1 + 2 + 8 = 11, 

for 𝑟2 we have |𝑟2| = 21. Both multisets are finite and 𝑟1 ≤ 𝑟2. We can apply all three remaining 

operations to 𝑟1and 𝑟2: 

𝑟1 + 𝑟2 = 4`2 + 4`4 + 2`5 + 3`8 + 19`9  

5 ∗ 𝑟1 = 5`2 + 10`4 + 40`9  

𝑟2 − 𝑟1 = 2`2 + 2`5 + 3`8 + 3`9  

□ 

We already encountered multisets in Example 12 and Example 13. But they differ from ( 62 ) in 

using the “++” operator instead of “+”. In fact, it is the same operator (addition), but in CPN 

Tools we use “++”, because “+” is reserved for the “normal”, numerical, addition. After 

introducing multisets we are ready to define (the structure of) CPN. 

Definition 3. Coloured Petri net. 

A Coloured Petri net is a 9-tuple 

𝐶𝑃𝑁 = {Σ, 𝑃, 𝑇, 𝐴, 𝑁, 𝐶, 𝐺, 𝐸, 𝐼}, 

where 

 Σ is a finite set of non-empty types (colour sets), 

 𝑃 is a finite set of places, 

 𝑇 is a finite set of transitions such that 𝑃 ∩ 𝑇 = ∅, 

 𝐴 is a finite set of arcs such that 𝑃 ∩ 𝐴 = 𝑇 ∩ 𝐴 = ∅, 

 𝑁 is a node function, 𝑁: 𝐴 → 𝑃 × 𝑇 ∪ 𝑇 × 𝑃, 

 𝐶 is a colour function, 𝐶: 𝑃 → Σ, 

 𝐺 is a guard function, 𝐺: 𝑇 → 𝐺𝐸𝑥𝑝𝑟, where 𝐺𝐸𝑥𝑝𝑟 is a set of expressions such that 

∀𝑡 ∈ 𝑇: (𝑇𝑦𝑝𝑒(𝐺(𝑡)) = 𝔹 ∧  𝑇𝑦𝑝𝑒 (𝑉𝑎𝑟(𝐺(𝑡))) ⊆ Σ), 

 𝐸 is an arc expression function, 𝐸: 𝐴 → 𝐴𝐸𝑥𝑝𝑟, where 𝐴𝐸𝑥𝑝𝑟 is a set of expressions such 

that 

∀𝑎 ∈ 𝐴: (𝑇𝑦𝑝𝑒(𝐸(𝑎)) = 𝐶(𝑝)𝑀𝑆  ∧  𝑇𝑦𝑝𝑒 (𝑉𝑎𝑟(𝐸(𝑎))) ⊆ Σ), 

where 𝑝 is the place in  𝑁(𝑎). 

 𝐼 is an initialisation function, 𝐼: 𝑃 → 𝐼𝐸𝑥𝑝𝑟, where 𝐼𝐸𝑥𝑝𝑟 is a set of closed expressions 

such that: 

∀𝑝 ∈ 𝑃: 𝑇𝑦𝑝𝑒(𝐼(𝑝)) = 𝐶(𝑝)𝑀𝑆. 
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□ 

A closed expression is an expression with no variables. The meaning of the sets and functions in 

the CPN definition is explained in the next example, which presents specifications of the nets 

from Example 12 and Example 13. 

Example 15. CPN definition. 

The MuTex CPN from Figure 29 a) can be specified according to Definition 3 as follows: 

𝑀𝑢𝑇𝑒𝑥 = {𝛴𝑀𝑇, 𝑃𝑀𝑇 , 𝑇𝑀𝑇 , 𝐴𝑀𝑇 , 𝑁𝑀𝑇 , 𝐶𝑀𝑇 , 𝐺𝑀𝑇 , 𝐸𝑀𝑇 , 𝐼𝑀𝑇}, ( 63 ) 

𝛴𝑀𝑇 = {𝑃𝑅𝑂𝐶𝐸𝑆𝑆𝐸𝑆, 𝑈𝑁𝐼𝑇} ( 64 ) 

𝑃𝑀𝑇 = {𝑜𝑢𝑡𝑂𝑓𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 𝑖𝑛𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 𝑠𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒} ( 65 ) 

𝑇𝑀𝑇 = {𝑒𝑛𝑡𝑒𝑟, 𝑙𝑒𝑎𝑣𝑒} ( 66 ) 

𝐴𝑀𝑇 = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6} ( 67 ) 

𝑁𝑀𝑇 = {(𝑎1, (𝑜𝑢𝑡𝑂𝑓𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 𝑒𝑛𝑡𝑒𝑟)), (𝑎2, (𝑒𝑛𝑡𝑒𝑟, 𝑖𝑛𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙)), 
                (𝑎3, (𝑖𝑛𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 𝑙𝑒𝑎𝑣𝑒)), (𝑎4, (𝑙𝑒𝑎𝑣𝑒, 𝑜𝑢𝑡𝑂𝑓𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙)), 

                (𝑎5, (𝑙𝑒𝑎𝑣𝑒, 𝑠𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒)), (𝑎6, (𝑠𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒, 𝑒𝑛𝑡𝑒𝑟))} 

( 68 ) 

𝐶𝑀𝑇 = {(𝑜𝑢𝑡𝑂𝑓𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 𝑃𝑅𝑂𝐶𝐸𝑆𝑆𝐸𝑆), 
                (𝑖𝑛𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 𝑃𝑅𝑂𝐶𝐸𝑆𝑆𝐸𝑆), (𝑠𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒, 𝑈𝑁𝐼𝑇)} 

( 69 ) 

𝐺𝑀𝑇 = {(𝑒𝑛𝑡𝑒𝑟, 𝑡𝑟𝑢𝑒), (𝑙𝑒𝑎𝑣𝑒, 𝑡𝑟𝑢𝑒)} ( 70 ) 

𝐸𝑀𝑇 = {(𝑎1, 𝑝𝑟𝑐), (𝑎2, 𝑝𝑟𝑐), (𝑎3, 𝑝𝑟𝑐), (𝑎4, 𝑝𝑟𝑐), (𝑎5, ()), (𝑎6, ())} ( 71 ) 

𝐼𝑀𝑇 = {(𝑜𝑢𝑡𝑂𝑓𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 𝑃𝑅𝑂𝐶𝐸𝑆𝑆𝐸𝑆. 𝑎𝑙𝑙()),  
                (𝑖𝑛𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙, ∅), (𝑠𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒, 1`())} ( 72 ) 

  

The text “MT” is added to the underscore of names of all sets and functions to distinguish 

between the general definition and the definition of MuTex CPN. The functions (( 68 ) to ( 72 )) 

are defined as sets of pairs, so, for example, ( 70 ) means that 𝐺𝑀𝑇(𝑒𝑛𝑡𝑒𝑟) = 𝑡𝑟𝑢𝑒 and 

𝐺𝑀𝑇(𝑙𝑒𝑎𝑣𝑒) = 𝑡𝑟𝑢𝑒).  

The first three parts are really easy to identify in the graph of the net: 𝛴𝑀𝑇 ( 64 ) lists the two 

colour sets (types) used in the net, 𝑃𝑀𝑇 ( 65 ) contains the places and  𝑇𝑀𝑇 ( 66 ) the transitions of 

the net.  

The arcs listed in 𝐴𝑀𝑇 ( 67 ) don’t appear under these names in the graph, but the node function 

𝑁𝑀𝑇 clearly identifies them. For example, the third member of  𝑁𝑀𝑇 ( 68 ) is 

(𝑎3(𝑖𝑛𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 𝑙𝑒𝑎𝑣𝑒)), so 𝑎3 is the arc from the place inCritical to the transition leave.  

The colour function 𝐶𝑀𝑇 ( 69 ) assigns colour sets to places and the guard function 𝐺𝑀𝑇 ( 70 ) 

guards to transitions. The transitions in the MuTex CPN have no guards, so all values in  𝐺𝑀𝑇 are 

just 𝑡𝑟𝑢𝑒. The arc expression function 𝐸𝑀𝑇 ( 71 ) assigns arc expressions to the arcs of the net 

and, finally, the initialisation function 𝐼𝑀𝑇 ( 72 ) assigns expressions that define initial marking to 

the places. 

If we compare the specification in ( 63 ) - ( 72 ) to Figure 29, we will find one significant 

difference: There are no declarations in the specification. The variables and colour sets are 
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named, but they are not defined. So, to make the textual specification complete, we should add 

the declarations from Figure 29 b) to it. For the net from Figure 31 we get the following 

specification: 

𝑀𝑢𝑇𝑒𝑥 = {𝛴𝐸𝑋, 𝑃𝐸𝑋, 𝑇𝐸𝑋, 𝐴𝐸𝑋, 𝑁𝐸𝑋 , 𝐶𝐸𝑋, 𝐺𝐸𝑋, 𝐸𝐸𝑋, 𝐼𝐸𝑋},  

𝛴𝐸𝑋 = {𝐼𝑁𝑇, 𝑈𝑁𝐼𝑇}  

𝑃𝐸𝑋 = {𝑝1, 𝑝2, 𝑝3, 𝑝4}  

𝑇𝐸𝑋 = {𝑡1, 𝑡2}  

𝐴𝐸𝑋 = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6}  

𝑁𝐸𝑋 = {(𝑎1, (𝑝1, 𝑡1)), (𝑎2, (𝑝1, 𝑡2)), (𝑎3, (𝑝2, 𝑡2)), (𝑎4, (𝑡1, 𝑝4)), 
               (𝑎5, (𝑡2, 𝑝4)), (𝑎6, (𝑡2, 𝑝3))} 

 

𝐶𝐸𝑋 = {(𝑝1, 𝐼𝑁𝑇), (𝑝2, 𝐼𝑁𝑇), (𝑝3, 𝑈𝑁𝐼𝑇), (𝑝4, 𝐼𝑁𝑇)}  

𝐺𝐸𝑋 = {(𝑡1, 𝑣 > 0), (𝑡2, 𝑥 > 𝑦)}  

𝐸𝐸𝑋 = {(𝑎1, 1`𝑣), (𝑎2, 𝑥), (𝑎3, 3`𝑦), (𝑎4, 1`4 + 2`𝑣), 
               (𝑎5, 1`𝑥 + 2`(𝑥 + 𝑦)), (𝑎6, ())} 

 

𝐼𝐸𝑋 = {(𝑜𝑢𝑡𝑂𝑓𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 𝑃𝑅𝑂𝐶𝐸𝑆𝑆𝐸𝑆. 𝑎𝑙𝑙()),  
                (𝑖𝑛𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙, ∅), (𝑠𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒, 1`())}  

To illustrate other notations: 𝑉𝑎𝑟(EEX(𝑎5)) = {𝑥, 𝑦} and 𝑇𝑦𝑝𝑒(EEX(𝑎4)) = 𝐼𝑁𝑇𝑀𝑆. 

□ 

Before defining the behaviour of CPN we, similarly to (Jensen, 1994), need to introduce some 

additional notation for all 𝑡 ∈ 𝑇and all pairs of nodes (𝑥1, 𝑥2) ∈ (𝑃 × 𝑇 ∪ 𝑇 × 𝑃): 

 𝐴(𝑡) – a set of arcs adjacent to a transition 𝑡,  𝐴(𝑡) = {𝑎 ∈ 𝐴|𝑁(𝑎) ∈ 𝑃 × {𝑡} ∪ {𝑡} × 𝑃}, 

 𝑉𝑎𝑟(𝑡) – a set of variables that occur in the guard of 𝑡, 𝑡 ∈ 𝑇, and in the expressions of 

arcs adjacent to 𝑡, 𝑉𝑎𝑟(𝑡) = {𝑣|𝑣 ∈ 𝑉𝑎𝑟(𝐺(𝑡)) ∨ ∃𝑎 ∈ 𝐴(𝑡): 𝑣 ∈ 𝑉𝑎𝑟(𝐸(𝑎))}, 

 𝐴(𝑥1, 𝑥2) – a set of arcs from a node (i.e. a transition or a place) 𝑥1 to 𝑥2, 𝐴(𝑥1, 𝑥2) =

{𝑎 ∈ 𝐴|𝑁(𝑎) = (𝑥1, 𝑥2)} and 

 𝐸(𝑥1, 𝑥2) – an expression, representing a multiset of tokens, that is a sum of all 

expressions on the arcs  from 𝑥1 to 𝑥2, 𝐸(𝑥1, 𝑥2) = ∑ 𝐸(𝑎)𝑎∈𝐴(𝑥1,𝑥2) . 

The first behaviour-related definition is about binding. 

Definition 4. Binding. 

A binding of a transition 𝑡 is a function 𝑏: 𝑉𝑎𝑟(𝑡) → ⋃ 𝑇𝑦𝑝𝑒(𝑣)𝑣∈𝑉𝑎𝑟(𝑡)  for which it holds that: 

1. ∀𝑣 ∈ 𝑉𝑎𝑟(𝑡): 𝑏(𝑣) ∈ 𝑇𝑦𝑝𝑒(𝑣) 

2. 𝐺(𝑡)<b>=true 

By 𝐵(𝑡) we denote the set of all bindings for 𝑡. 

□ 

The first condition of Definition 4 tells us that a value assigned to each variable have to be from 

the type of the variable and the second condition that the guard of the corresponding transition 
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has to be true for the values of 𝑉𝑎𝑟(𝑡). The bindings are usually written in sharp brackets, as we 

have already seen in Example 12 and Example 13. The next two definitions formalize the meaning 

of token elements, markings, binding elements and steps. 

Definition 5. Token element and marking. 

A token element is a pair (𝑝, 𝑐), where 𝑝 ∈ 𝑃 and 𝑐 ∈ 𝐶(𝑝). The set of all token elements is 

denoted by 𝑇𝐸. 

A marking is a multi-set over 𝑇𝐸. The sets of all markings is denoted by 𝕄. The initial marking 𝑀0 

is the marking obtained by evaluating the initialisation expressions: 

∀(𝑝, 𝑐) ∈ 𝑇𝐸:𝑀0(𝑝, 𝑐) = (𝐼(𝑝))(𝑐) 

□ 

An example of a marking written according to Definition 5 is ( 73 ), where token elements 

are (𝑝1, 0), (𝑝1, 1) and so on. 

𝑀0 = 1`(𝑝1,0)++1`(𝑝1,1)++8`(𝑝1,3)++5`(𝑝2,1) ( 73 ) 

The multiset ( 73 ) is in fact the initial marking of the first net from Example 13, depicted in Figure 

31. But the form in which 𝑀0 is written in Example 13 (and other examples) differs from ( 73 ).  

We can say that the form used in the examples is typical for Petri nets, while the form from 

Definition 5 is not. Both forms are useable for CPN and formally the “typical” form is defined by a 

function 𝑀∗: 𝑃 → ΣMS,such that 

∀𝑝 ∈ 𝑃: (𝑀∗(𝑝) ∈ 𝐶(𝑝)𝑀𝑆 ∧ (∀𝑐 ∈ 𝐶(𝑝): (𝑀∗(𝑝))(𝑐) = 𝑀(𝑝, 𝑐))) 

Then the second form, according to ( 73 ), is 

𝑀0
∗(𝑝1) = 1`0++1`1++8`3,𝑀0

∗(𝑝2) = 5`1,𝑀0
∗(𝑝3) = 𝑀0

∗(𝑝4) = ∅ 

and (𝑀0
∗(𝑝1))(0) = 𝑀(𝑝1,0) = 1, (𝑀0

∗(𝑝1))(1) = 𝑀(𝑝1,1) = 1, (𝑀0
∗(𝑝1))(3) = 𝑀(𝑝1,3) = 8, 

(𝑀0
∗(𝑝2))(1) = 𝑀(𝑝2,1) = 5 (in other cases the value is 0). To simplify the notation both 𝑀∗ 

and 𝑀 are denoted as 𝑀 (Jensen, 1994) and we do the same here. 

Definition 6. Binding element and step. 

A binding element is a pair (𝑡, 𝑏), where 𝑡 ∈ 𝑇 and 𝑏 ∈ 𝐵(𝑡). The set of all binding elements is 

denoted by 𝐵𝐸. 

A step is a non-empty and finite multi-set over 𝐵𝐸. 

□ 

Inscription of binding elements and steps has been already demonstrated in Example 12 and 

Example 13. Now we have everything necessary for the definition of CPN behaviour, namely for 

defining enabling and firing of steps. 



56 
 

Definition 7. Enabling and firing of steps. Direct reachability. 

A step 𝑌 is enabled in a marking 𝑀 (denoted 𝑀[Y > ) if and only if the following property holds: 

∀𝑝 ∈ 𝑃: ∑ 𝐸(𝑝, 𝑡)<b> ≤
(𝑡,𝑏)∈𝑌

 𝑀(𝑝) 

We also say that (𝑡, 𝑏) (denoted 𝑀[ (t,b) > ) is enabled and 𝑡 is enabled (denoted 𝑀[t > ). In 

addition, we say that the elements of 𝑌 are concurrently enabled (provided |𝑌| ≥ 0). 

When a step 𝑌 is enabled in a marking 𝑀1 it may fire (occur), changing 𝑀1 to another marking 

𝑀2, defined for all 𝑝 ∈ 𝑃 as: 

∀𝑝 ∈ 𝑃:𝑀2(𝑝) = (𝑀1(𝑝) − ∑ 𝐸(𝑝, 𝑡)<b> 

(𝑡,𝑏)∈𝑌

) + ∑ 𝐸(𝑡, 𝑝)<b> 

(𝑡,𝑏)∈𝑌

 

We say that 𝑀2is directly reachable from 𝑀1 and write it as  𝑀1 [Y > 𝑀2. 

□ 

Firings and steps have been already presented in Example 7 to Example 13, here we demonstrate 

the computation of a new marking according to Definition 7 on the firing 

 𝑀1 [(t2,<x=3,y=1>)> 𝑀2 from the first net in Example 13. Recall that the firing changed the 

marking  

 𝑀1 = (1`0+1`1+7`3, 5`1, ∅, 2`3+1`4) 

to  

 𝑀2 = (1`0+1`1+6`3, 2`1, 1`(), 3`3+3`4). 

As an example we take p2, where 

 𝑀2(𝑝2) =   ( 𝑀1(𝑝2) − 3`1) + ∅ =   (5`1 − 3`1) = 2`1 

and p4, where  

 𝑀2(𝑝4) =   ( 𝑀1(𝑝4) − ∅) + (1`3 + 2`4) = (2`3+1`4) + (1`3 + 2`4) = 3`3+3`4. 

The final definition of this section extends the notion of occurrence and reachability from 

Definition 7. 

Definition 8. Occurrence sequence. Reachability. 

A finite occurrence sequence is a sequence of markings and steps 

𝑀1[ 𝑌1 > 𝑀2[ 𝑌2 > …  𝑀𝑛[ 𝑌𝑛 > 𝑀𝑛+1 

such that 𝑛 ∈ ℕ and  
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∀𝑖 ∈ {1,… , 𝑛}: 𝑀𝑖[ 𝑌𝑖 > 𝑀𝑖+1 

𝑀1 is the start marking, 𝑀𝑛+1is the end marking and 𝑛 is the length of the sequence. 

An infinite occurrence sequence is a sequence of markings and steps 

𝑀1[ 𝑌1 > 𝑀2[ 𝑌2 > … ,  

where ∀𝑖 ∈ {1,… }: 𝑀𝑖[ 𝑌𝑖 > 𝑀𝑖+1. 

A marking 𝑀𝑏 is reachable from a marking  𝑀𝑎 if and only if there exists a finite occurrence 

sequence starting in 𝑀𝑎  and ending in 𝑀𝑏. The set of markings which are reachable from 𝑀𝑎 is 

denoted by [𝑀𝑎>. A marking is reachable if and only if it belongs to [𝑀0>. 

□ 

Occurrence sequences of zero length are allowed, so ∀𝑀 ∈ [𝑀0>:𝑀 ∈ [𝑀>. It should be noted 

that a number of properties have been defined for CPN, for example: 

 Boundedness: Let 𝑝 ∈ 𝑃, 𝑛 ∈ ℕ and 𝑚 ∈ 𝐶(𝑝)𝑀𝑆 be given. Then 𝑛 is an integer bound for 

𝑝 if and only if ∀𝑀 ∈ [𝑀0> : |𝑀(𝑝)| ≤ 𝑛 and 𝑚 is a multi-set bound for 𝑝 if and only if 

∀𝑀 ∈ [𝑀0> : 𝑀(𝑝) ≤ 𝑚. 

 Home properties: Let a marking 𝑀 ∈ 𝕄 and a set of markings 𝑋 ⊆ 𝕄 be given. Then 𝑀 is 

a home marking if and only if ∀𝑀′ ∈ [𝑀0> :𝑀 ∈ [𝑀′> and 𝑋 is a home space if and only 

if ∀𝑀′ ∈ [𝑀0> : 𝑋 ∩ [𝑀′> ≠∅ . 

 Liveness properties: Let a marking 𝑀 ∈ 𝕄 and a set of binding elements 𝑋 ⊆ 𝐵𝐸 be 

given. Then 𝑀 is dead (a deadlock marking) if and only if no binding element is enabled in 

𝑀 (i.e. ∀𝑥 ∈ 𝐵𝐸: ¬𝑀[𝑥> ) and 𝑋 is dead in 𝑀 if and only if no element of 𝑋 can become 

enabled (i.e. ∀𝑀′ ∈ [𝑀0> ∀𝑥 ∈ 𝑋 ∶  ¬𝑀′[𝑥> . 𝑋 is live if and only if there is no reachable 

marking in which 𝑋 is dead. 

Whether a net has these properties can be verified using analytical methods such as state space 

or invariant analysis. 

VI.5 Timed CPN 
CPN as we know them so far can be used to specify functionality of systems, but without any 

explicit representation of time.  This is satisfactory, if our goal is to validate or verify basic, 

functional properties, like the ones listed at the end of the previous section. But for dynamic 

simulation models we need some representation of time. For example, we need to describe 

somehow that an execution of an event, represented by a firing of some transition, takes some 

time. Fortunately, CPN theory and CPN Tools allow to incorporate time into models. Nets, which 

do this are called Timed CPN. To distinguish between the time in the real world and the time in 

CPN models, we call the latter one simulated time. The simulated time is a symbolic 

representation of time during simulation and has a form of a natural number. It has the value 0 

at the beginning of the simulation and its advance depends on the simulated model. Timed CPN 

differs from “ordinary” CPN in the following features: 
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1. A value called timestamp can be associated with tokens. When a token has timestamp, it 

is written after the ordinary value of the token. The value and the timestamp are 

separated by “@” symbol. For example “2@5” is a token with value 2 and timestamp 5. 

The timestamp of a token represents the time when the token has been created. 

2. Colour sets can be timed. A timed colour set is an ordinary colour set, where each value 

includes a timestamp. Tokens, which include timestamps are always members of some 

timed colour sets. The keyword timed is used to declare that a colour set is timed. So, 

the value “2@5” can be a member of timed integer colour set, declared as  

“colset INTtm = int timed;”. 

3. Arc expressions may include so-called delay expressions, which define timestamps of 

newly created tokens. These expression have the form “@+expr”, where expr is an 

arithmetic expression of the integer type. 

4. A delay expression can be also associated with a transition, as so-called transition time 

inscription. It has the same effect as if the expression is added to each outgoing arc of the 

transition. 

5. Delay expressions can also be a part of the initialization expressions of places, whose 

types are timed colour sets. Here they define timestamps of tokens in 𝑀0. 

Enabling and firing in timed CPN is elegantly defined by introducing the notion of token 

availability. 

Definition 9. Token availability.  

A token 𝑣@𝑠 is available at simulated time 𝑡𝑠𝑖𝑚 if and only if 𝑡𝑠𝑖𝑚 ≥ 𝑠. 

This means that all what was said in Definition 8 and Definition 9 remains valid, but only available 

tokens are taken into account. And tokens generated by firings have timestamps computed by 

corresponding delay expressions. All tokens without timestamps are regarded as tokens with 

timestamps equal to 0, so they are always available. Simulation of timed CPN then proceeds 

according to the following algorithm: 

Step 1. Set the value 𝑡𝑠𝑖𝑚 of simulated time to 0. 

Step 2. If there is no enabled transition, go to Step 4. 

Step 3. Pick up one enabled transition and fire it. Go to Step 2. 

Step 4. Set the value 𝑡𝑠𝑖𝑚 to the lowest value 𝑡𝑠𝑖𝑚′ such that there is an enabled 

transition at 𝑡𝑠𝑖𝑚′. Go to Step 2. If such 𝑡𝑠𝑖𝑚′ cannot be found, end simulation. 

Of course, a user can interrupt the simulation anytime, specify a number of firings in given 

simulation run or specify other conditions of simulation run termination. Specification and 

simulation of timed CPN is illustrated by Example 16. 

Example 16. Timed CPN. 
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colset  

  INTtm = int timed; 

 

var  

  x : INT; 

 

 

 

 

tsim=0 

 

tsim=5 

a) b) c) 

Figure 35. A  timed CPN in 𝑀0and  𝑀1: declarations (a), graph in 𝑀0 (b) and in  𝑀1 (c). 

A simple timed CPN in its initial marking is shown in Figure 35 b). All places hold tokens of colour 

set INTtm (Figure 35 a), which means that their values consist of integer values and 

timestamps. In   𝑀0 only the place tp1 holds a token. Because the initialisation expression 

𝐼(𝑡𝑝1) = 1`2 doesn’t contain a delay expression the token in tp1 has the timestamp equal to 0. 

The transition tt1 is enabled in  𝑀0 in the simulated time 𝑡𝑠𝑖𝑚 = 0 as the required token in 

tp1 is already available. After (tt1,<x=2>) is fired the net appears in the marking  𝑀1 (Figure 

35 c) and the simulated time advances to 5, because it is the nearest time point where any 

transition is enabled again. The firing of (tt1,<x=2>) produces three tokens of the value 2 and 

timestamp 5 (3`2@5), despite the fact that from the expression associated with the arc from tt1 

to tp2 one can get an impression that it will be 1`2@0++2`2@5. This is because when we have 

an arc expression with more than one token values and only one delay expression then the delay 

expression is applied to all tokens. We can produce tokens with different timestamps for the 

same place, but then each token value in given arc expression after the first delay expression 

have to have its own delay expression. So, for example 

1`𝑥 ++ 2`𝑥@ + 5 ++ 4`𝑥 ++ 3`(𝑥 + 1)@ + 10 

is illegal, because there is no delay expression after 4`𝑥 (no delay expression after 1`𝑥 is OK). The 

correct version will be 

1`𝑥 ++ 2`𝑥@ + 5 ++ 4`𝑥@ + 10 ++ 3`(𝑥 + 1)@ + 10, 

which produces the following multiset of tokens: 

3`2@5 ++ 4`2@10 ++ 3`3@10. 
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The transition enabled in  𝑀1 is tt2. Delay expressions are associated with both tt2 and the arc 

from tt2 to tp4, so when (tt2,<x=2>) fires in  𝑀1 and 𝑡𝑠𝑖𝑚 = 5, the new token in tp3 will 

have the timestamp 5 + 100 = 105 and the new one in tp4 will have the timestamp 

5 + 100 + 3 ∗ 2 = 111. After firing (tt2,<x=2>) 𝑡𝑠𝑖𝑚 advances to 105 and marking changes to 

 𝑀2 (Figure 36 a). In   𝑀2 (tt3,<x=3>) can be fired and after the firing the marking changes to 

 𝑀3  (Figure 36 b). The simulation of the net ends here as there will be no enabled transitions in 

the future. 

 

tsim=105 

 

tsim=105 

a) b) 

Figure 36. The timed CPN from Figure 35 in 𝑀2 (a) and  𝑀3 (b). 

□ 

What was said about arc expressions is true for output arcs (i.e. arcs from transitions to places). 

But delay expressions can also be used on input arcs (i.e. to transitions). Here they are called pre-

empting time stamps and allow to use tokens before they become “officially” available in given 

net. For example, take the net fragment in Figure 37. Here t1 can be fired in 𝑡𝑠𝑖𝑚 = 5 despite 

the fact that tokens in p1 have the timestamp 10. This is thank to the expression “@+5”. 

  

a) b) 

Figure 37. A CPN fragment with pre-empting time stamps in tsim=5 (a) and tsim=10 (b). 
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The colour set used in Figure 37 is declared as colset INTtm = int timed;. 

VI.6 Queuing System as Timed CPN 
In section V queuing systems were introduced as a particular kind of discrete systems. All 

components of queuing systems can be also modelled by high-level PN, such as timed CPN. This is 

demonstrated by Example 17, which presents a CPN model of simple single queue queuing 

system with a limited capacity FIFO queue and one server. It is inspired by one of the examples 

shipped with the CPN Tools. 

Example 17. Simple queuing system as timed CPN. 

The graph of timed CPN that represents a simple queuing system with one server serving 

customers is shown in Figure 38 and its declarations in Figure 39. In the Kendall’s classification it 

can be designated as M/G/1/FIFO/51, because 

 The time between two subsequent job arrivals (i.e. the interarrival time) has an 

exponential distribution (M), here with the rate (or intensity) 𝜆 =
1

5
 or mean 

1

𝜆
= 5. 

 The time to process a job has some general random distribution with known mean and 

variance (G). In this case it is the normal distribution with mean 𝜇 = 6 and variance 𝜎 =

3. 

 There is one server (1). 

 The queue is a classical FIFO queue. 

 The queue capacity is 50 and the server can serve one customer at once, so the system 

capacity is 51. 

 The population size is not specified because it is unlimited. 

 

 

Figure 38. Graph of a CPN representing simple queuing system in 𝑀0. 

The customers’ arrival is modelled by the place NextCust and the transition Arrive. In the 

initial marking the place NextCust hosts one token with the timestamp 0. If there is an 

available token in NextCust and at least one token in FreeQueueCap, Arrive can be fired.  

Firing of Arrive represents arrival of a new customer. We can see that the arrival pattern is 
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implemented as a delay expression on the arc from Arrive to NextCust, which computes the 

timestamp of a newly created token in NextCust as current time plus and integer value that is 

(approximately) exponentially distributed with a mean equal to 5. The value is computed by the 

function expTime, which declaration is in Figure 39. The function uses CPN ML build-in function 

exponential and surrounding code is about conversion from integer to real and back. The 

function normTime, used to generate random numbers from a Gaussian distribution, is defined 

in similar way. 

colset UNIT = unit;  

colset INTINF = intinf;  

colset UNITtm = unit timed; 

colset INTINFtm = intinf timed; 

colset INTINFlist = list INTINF; 

 

var customers: INTlist; 

var customer: INT; 

 

fun expTime (mean: int) = let 

   val realMean = Real.fromInt mean 

   val rv = exponential((1.0/realMean)) 

in floor (rv+0.5) 

end; 

 

fun normTime (mean: int, variance: int) = let 

   val realMean = Real.fromInt mean 

   val realVar =  Real.fromInt variance 

   val rv = normal(realMean,realVar) 

in floor (rv+0.5) 

end; 

 

Figure 39. Declarations of the simple queuing system CPN from Figure 38. 

The queue is composed of places CustomerQueue and FreeQueueCap (and adjacent arcs). 

The place CustomerQueue holds only one token in every marking. This token is a list of values 

from the colour set INTINF and represents the customers waiting in the queue. The colour set 

INTINF is an integer type without limits. The function time() returns an actual simulated time 

(as a value from INTINF), the operator “^^” is concatenation of lists and  “::” in “h::s” is a 

list composed of a head h (a value) and a tail s (a list). Firing of Arrive adds a value to the end 

of the list in CustomerQueue and firing of Start_Serving removes a value from the head 

(front) of the list. To illustrate working of these operators consider an occurrence sequence 

𝑀𝑎 [(Arrive, <customers=[19,20]>) >   𝑀𝑏 , 

𝑀𝑏 [(Start_Serving, <customer=19, customers=[20,27]>)>  𝑀𝑐 

The firing of Arrive occurs in 𝑀𝑎,  

𝑀𝑎(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑄𝑢𝑒𝑢𝑒) = [19,20] 
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at  𝑡𝑠𝑖𝑚 = 27 and results in  𝑀𝑏, 

𝑀𝑏(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑄𝑢𝑒𝑢𝑒) = [19,20]^^[27] = [19,20,27]. 

The subsequent firing of Start_Serving removes the first token from CustomerQueue and 

we will have  

𝑀𝑐(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑄𝑢𝑒𝑢𝑒) = [20,27] 

because  

[19,20,27] = 19 ∷ [20,27]. 

The place FreeQueueCap and adjacent arcs are used to limit the capacity of the queue to 50, 

the number of tokens in this place is equal to the number of free slots in the queue. The 

consequence of this solution is that the interarrival time follows the defined distribution only 

when the queue is not full. 

The part of the net consisting of places Idle and Busy and transitions StartServing and 

Finish_Serving is a server providing the service of this system to customers. A token in 

Idle means that the server is unoccupied, a token in Busy that a customer is being served. The 

delay expression on the arc from Start_Serving to Busy defines the service pattern: a time 

needed to serve a customer is an integer number drawn from the normal distribution with mean 

6 and variance 3. 

This queue system also contains a model for the departure – the place Completed. It collects 

tokens representing customers served by the system. The purpose of integer values stored in 

tokens is to provide information about the time when corresponding customers entered the 

system. If we take a token from Completed and subtract its value from its timestamp we get a 

total time given customer spent in the system - by waiting in the queue and being served. 

□ 

VI.7 Utilities for Simulation Studies in CPN Tools 
We already know how to create a timed CPN model of a discrete-event system and now it is the 

right time to show how to perform actual simulation studies using these models. First, we 

introduce simulation-specific features of CPN Tools, namely monitoring functions and 

replications. Then, in the next section, we present a complete simulation study of a system based 

on the net from Example 10. 

VI.7.1 Monitors 

Usually the purpose of simulation experiments is to collect some data about performance of 

simulated systems (models). To be able to collect these data during a CPN simulation CPN Tools 

allows to define special collections of functions, called monitors. Monitors may also have another 

purpose, such as to terminate a simulation. Four categories of monitors are currently available in 

CPN Tools: 
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 Breakpoint monitors. They are used to stop a simulation. A breakpoint monitor defines a 

condition and the corresponding simulation stops when it becomes true. 

 Data collector monitors are the most essential category for simulation studies as they 

extract numerical data from given net during simulation and save them to text files with 

a predefined format. Simulation results are then calculated on the basis of these data. 

The data can be, for example, values assigned to variables during firings, a number or 

values of tokens in places or a number of firings of a transition.  

A data collector produces two outputs. The first is a text file with the “.log“ extension 

and a name identical to the name of the monitor. The text file is created only if the 

“Logging” option is checked for the monitor in CPN Tools and contains all values 

collected by the monitor. For each value it also records in which simulation step and 

which simulated time it was obtained. The second file is a simulation report in HTML 

format. The report contains average, minimum and maximum from the values collected 

by the monitor in given simulation run. 

 Write-in-file monitors. As the name suggests, they can write a text to files. What is 

written depends on modellers. They are useful for data extraction in cases when the pre-

defined file format provided by the data collector monitors is inappropriate. The file 

created has a name identical to the name of the monitor. File extension is not fixed and 

can be specified in CPN Tools. 

 User-defined monitors are generic monitors without any specific purpose, so they can be 

used when a functionality not provided by other types of monitors is required. An 

example of such functionality is a communication with an external application by means 

of TCP/IP. 

Each monitor can be associated with a subset of nodes (i.e. places and transitions) of given CPN. 

This gives a monitor an access to tokens in associated places and to values used in firings of 

associated transitions. The time of monitor execution depends on its association to transitions: 

 If a monitor is associated with one or more transitions then it is executed after one of 

these transitions is fired. 

 If a monitor is associated with zero transitions then it is executed after each simulation 

step (i.e. after each transition firing). 

Each monitor consists of several functions, namely: 

 Initialization function (init).  It initializes a monitor before a simulation (simulation run) 

starts. For example, in a write-in-file monitor it can write a header to a file. This function 

has access to the places associated with the monitor but not to the associated 

transitions. 

 Predicate function (pred). This function defines a condition for the execution of the next 

two functions. It is called after simulation steps and when it returns true then the 

observation and action functions of the monitor are executed. If it returns false, these 

functions are not executed. 
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 Observation function (obs). Its purpose is to extract data from the associated nodes of 

the net and it can return any type of value. 

 Action function (action). This function is executed after the observation function and 

can process the value returned by it. It doesn’t have an access to the associated nodes. 

 Stop function (stop). It is executed when a simulation ends (i.e. when simulation stop 

criteria are met). For example, in a write-in-file monitor it can write a footer to a file. As 

in the case of the initialization function, it can access associated places only. 

What functions can be defined by the modeller depends on the monitor category. For the 

breakpoint monitor category only the predicate function is available. For data collector and 

write-in-file monitors one can define all but the action functions. In user-defined monitors all five 

functions are available. 

Above we used the term simulation or simulation run several times. But what exactly the 

simulation (run) of a net in CPN Tools is? We can define it as an occurrence sequence that starts 

in given marking (usually the initial marking of the net) and ends in a marking in which at least 

one of the following criteria is met: 

 There are no more enabled transitions. 

 Specified number of steps (firings) has been executed. The number of transitions firing 

can be defined for some simulation modes in CPN Tools, namely “Fast forward” and 

“Play”. 

 The simulation is stopped by a user, i.e. by using so-called “Stop tool”. 

 Predicate function of some breakpoint monitor returns true. 

An exact procedure of monitor creation can be found in the CPN Tools documentation at 

http://cpntools.org/, but in general we recommend following these steps: 

1. Select an appropriate monitor category from the “Monitoring” palette (toolbar) and click 

on one of the nodes you want to be associated with the monitor. The template code of 

the monitor is generated automatically. 

2. Rename the monitor. 

3. If needed, go to the “Nodes ordered by pages” part of the monitor definition and add 

surrounding places and transitions using the corresponding context menu. 

4. If any places and transitions have been added in step 3, generate the monitor template 

code again (using context menu). 

5. Add your own code to the generated functions. 

How the monitors can look like is illustrated by Example 18, which adds monitors to the net from 

Example 17. It also shows how multiple simulations can be run automatically in CPN Tools. 

Example 18. Monitors for the queuing system. 

The monitors in this example allow collecting data from the simple queue system CPN about the 

total time spent in the system by a customer, queue waiting times and a queue length. CPN Tools 

can generate the template code of monitors, so the modeller usually adds only a code defining 

http://cpntools.org/
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the specific functionality of given monitor. There are four monitors, one from each category. The 

code of the monitors is presented in Figure 40 to Figure 43, where headers of functions are 

written in bold and the code added or modified manually is in italic. 

fun pred(bindelem,Top'Completed_1_mark : INTINFtm tms) =  

let 

  fun  predBindElem(Top'Finish_Serving (1,{customer})) =  

        (size Top'Completed_1_mark >= 300) 

     | predBindElem _ = false 

in 

  predBindElem bindelem   

end 

 

Figure 40. Breakpoint monitor Served300Customers for the CPN from Example 17. 

The first one is a breakpoint monitor named Served300Customers, which stops simulation 

after 300 customers have been served. Its code is shown in Figure 40. The monitor is associated 

with the place Completed and transition Finish_Serving, because the number of served 

customers is increased only when Finish_Serving is fired and it is equal to the number of 

tokens in the place Completed. The monitor contains only the predicate function pred, which 

has an access to the variables used in firing of Finish_Serving (i.e. customer) and marking  

 

fun init() = NONE 

 

fun pred(bindelem) =  

let 

  fun  predBindElem (Top'Finish_Serving (1,{customer})) = true 

     | predBindElem _ = false 

in 

  predBindElem bindelem   

end 

 

fun obs(bindelem) =  

let 

  fun  obsBindElem (Top'Finish_Serving (1,{customer})) =  

        time()-customer 

     | obsBindElem _ = ~1 

in 

  obsBindElem bindelem   

end 

 

fun stop() = NONE 
 

Figure 41. Data collector monitor TimeSpentInSystem for the CPN from Example 17. 

 

of Completed (represented by the input variable Top'Completed_1_mark). The only thing 

a user has to add to the generated code is the condition in the local function predBindElem. 
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The function predBindElem has two forms (or rules in the SML terminology). The first one is 

with formal parameters (or an argument pattern in the SML terminology) 

“Top'Finish_Serving(1, {customer})”. This rule is used when Finish_Serving is 

fired with correct binding and checks whether the system already served 300 customers. A 

monitor with more than one transitions associated will have one rule for each of them. The 

second rule has the argument pattern “_”, which means “any argument”. Because only one rule 

is executed when the function is called and it is the first rule whose argument pattern matches 

actual parameters of the function, the second rule is executed only when Finish_Serving is 

fired with some invalid binding. All monitor functions that have access to transitions are 

structured similarly. 

The data collector monitor TimeSpentInSystem (Figure 41) is associated only with the 

transition Finish_Serving. It has three functions but only the observation function obs 

contains code added by the modeller. The code subtracts value of the variable customer from 

an actual simulated time, obtained by the function time(). The value of customer contains 

arrival time of a customer whose serving has been finished by the corresponding firing of 

Finish_Serving. 

fun init(Top'CustomerQueue_1_mark : INTINFlist ms) =  

maxQueueLength:=0 

 

fun pred(bindelem,Top'CustomerQueue_1_mark : INTINFlist ms) =  

let 

  fun  predBindElem (Top'Arrive (1,{customers})) = true 

     | predBindElem _ = false 

in 

  predBindElem bindelem   

end 

 

fun obs(bindelem,Top'CustomerQueue_1_mark : INTINFlist ms) =  

let 

  fun  obsBindElem (Top'Arrive (1,{customers})) =  

        (length customers) + 1 

     | obsBindElem _ = 0 

in 

  obsBindElem bindelem   

end 

 

fun action(observedval) =  

  (if (!maxQueueLength)<observedval then  

       maxQueueLength:=observedval else ()) 

 

fun stop(Top'CustomerQueue_1_mark : INTINFlist ms) = () 
 

Figure 42. User defined monitor UpdateMaxQueueLength for the CPN from Example 17. 

The third monitor is a user defined monitor UpdateMaxQueueLength (Figure 42). Its purpose 

is to determine the maximal number of customers waiting in the queue. To do this it checks the 

size of the list, stored in the token in the place CustomerQueue, every time the transition 
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Arrive is fired. Naturally, it is associated with these two nodes. The maximal number is stored 

in a reference (global) variable maxQueueLength, declared as 

globref maxQueueLength=0; 

The init function of UpdateMaxQueueLength sets maxQueueLength to 0, obs extracts 

an actual queue length and action updates maxQueueLength if necessary. The input 

parameter observedval contains a value returned by obs. The operator “!” is used to obtain 

the value of given variable. 

fun init(Top'CustomerQueue_1_mark : INTINFlist ms) =  

  "<simulation>\n" 

 

fun pred(bindelem,Top'CustomerQueue_1_mark : INTINFlist ms) =  

let 

  fun  predBindElem (Top'Start_Serving (1,{customer,customers})) = 

true 

     | predBindElem _ = false 

in 

  predBindElem bindelem   

end 

 

fun obs (bindelem,Top'CustomerQueue_1_mark : INTINFlist ms) =  

let 

  fun  obsBindElem (Top'Start_Serving (1,customer,customers})) =  

        " <simrec>\n"^ 

        "  <qlength>"^Int.toString((length customers)+1)^ 

        "</qlength>\n"^ 

        "  <wtime>"^IntInf.toString(time()-customer)^"</wtime>\n"^ 

        " </simrec>\n" 

     | obsBindElem _ = "" 

in 

  obsBindElem bindelem   

end 

 

fun stop(Top'CustomerQueue_1_mark : INTINFlist ms) =  

        " <maxqlength>"^Int.toString(!maxQueueLength)^ 

        "</maxqlength>\n"^ 

        "</simulation>\n" 
 

Figure 43. Write-in-file monitor WaitingTimeAndQLength for the CPN from Example 17. 

The last monitor we would like to show here is a write-in-file monitor 

WaitingTimeAndQLength (Figure 43), associated with the place CustomerQueue and 

transition Start_Serving. The monitor extracts actual queue length and queue waiting time 

of a customer just removed from the queue by a firing of Start_Serving and writes them 

together with the maximal number of customers waiting in the queue to an xml file. The queue 

length and waiting time are extracted and formatted in XML by the obs fuction, init fuction 

adds a header and stop function a footer with the maximal queue length (from the variable 

maxQueueLength). Figure 44 shows an XML file generated by WaitingTimeAndQLength 
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in a simulation run where 3 customers were served. The value in the maxqlength element is 2 

because when the simulation stopped two new customers had been waiting in the queue. 

<simulation> 

 <simrec> 

  <qlength>1</qlength> 

  <wtime>0</wtime> 

 </simrec> 

 <simrec> 

  <qlength>1</qlength> 

  <wtime>0</wtime> 

 </simrec> 

 <simrec> 

  <qlength>1</qlength> 

  <wtime>4</wtime> 

 </simrec> 

 <maxqlength>2</maxqlength> 

</simulation> 
 

Figure 44. An example of the XML file generated by the monitor WaitingTimeAndQLength. 

In CPN Tools, nets can be hierarchical, divided into multiple parts, called pages. Even if the net 

consists of only one part (as in all examples in this book), it has to be placed on a named page. In 

this example the name of the page is Top, which is why the text “Top'” occurs often in the code 

of the monitors. 

□ 

VI.7.2 Simulations and Replications 

To execute multiple simulations (simulation runs) automatically we can use so-called simulation 

replications in CPN Tools. For example, to execute 10 simulation runs of the net from Example 18 

we add a text field (using the “Text” tool from the “Auxiliary” palette in CPN Tools) to the graph 

of the net and write 

CPN'Replications.nreplications 10 

Then we right click on the text and choose “Evaluate ML” from the corresponding context menu. 

After this, 10 simulations are performed one by one and data collected in each simulation are 

stored in a separate folder. 

VI.8 Simulation Study: Small Manufactory 
This section presents a fictional but complete simulation study, which follows the steps defined in 

section I.3. The study analyses a workflow in a small manufactory using a simulation model 

similar to the one in Example 10.  The whole section can be considered as one example, divided 

into subsections with respect to the simulation study steps. 

VI.8.1 Problem Formulation 

Suppose that we have a manufactory assembling products from delivered sets of parts. The basic 

manufacturing process, or workflow, can be described as follows: 
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1. The sets of parts are delivered in packages, each contains 50 sets. They can be delivered 

every 60 minutes but the period between deliveries is usually longer because the next 

delivery can arrive only after the previous one has been processed (i.e. unpacked and put 

into a queue).   

2. Delivered sets are then put into an input queue with FIFO discipline. The queue has the 

capacity of 50 sets. The time needed to unpack one set of parts to the input queue is 

approximately 50 seconds (provided that there is enough space in the queue). A delivery 

can be unpacked only after the unpacking of the previous one has been finished. 

3. The input queue is connected to an assembly line, which consists of two belt conveyors 

and an assembly station. The first conveyor moves a set of parts from the input queue to 

the assembly station then the assembly station constructs a product from the set and, 

finally, the product is moved by the second conveyor to the end of the line. 

According to the official documentation of the assembly line the time needed to move a 

set by the first conveyor is 25 seconds, the time to assembly a product is 67 seconds and 

the time for the transfer by the second conveyor is 20 seconds. 

The sets of parts are removed from the input queue automatically. They are removed 

one by one; the removal of one set takes about 6 seconds. For safety reasons a set can 

be removed (and put on the first conveyor) only if the whole assembly line is empty. 

4. A finished product is removed from the end of the line by a crane, which moves it to a 

packaging station. 

The crane can handle only one product at once and, according to its documentation, the 

movement from the packaging station to the end of the line takes 46 seconds. The 

movement in the opposite direction is slower, because the crane holds a product, and 

takes 63 seconds. The time needed to pick up the product is 5 seconds and the time for 

releasing it is 6 seconds. 

5. The packaging station consists of an output queue and a room where the actual 

packaging occurs. The output queue has the capacity of 50 products and obeys the FIFO 

discipline. At one end the products are inserted into the queue by the crane and at the 

other end removed by employees, who do the packaging. The time needed to pack one 

product by two employees is approximately two minutes (120 seconds). 

6. The finished products are then moved to a warehouse. Capacity of the warehouse and 

means of transport from the packaging station to the warehouse are such that they will 

sustain 300% increase of production. 

The simulation study should examine the ways in which the manufacturing process can be 

optimized. 

VI.8.2 Setting of Objectives and Overall Project Plan 

The current configuration of the manufactory offers several possibilities for optimization. In 

principal, the optimization can be about speeding up the manufacturing process or reducing 

costs. The study should explore these possibilities by finding answers to the following questions: 
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1. How much will putting more products on the line speed up the process? The current 

situation is such that the rule “only one set of parts/product on the assembly line” makes 

the manufacturing process safe but also slows it down. Two options are considered: 

a. The next set of parts is removed from the input queue when the assembly of the 

previous one is completed. In this way we can save the time needed to move a 

product by the second conveyor. 

b. The next set of parts is removed from the input queue before finishing the 

assembly of the previous one. This option is more risky, but can save a part of the 

time need for the assembly itself. 

Both options should be evaluated by simulation experiments to decide which one is 

worth the risk. 

The experiments should also reveal whether it will be needed to put some sort of stack at 

the end of the line: now there is no stack and this can be a problem, because the crane 

occasionally fails to pick up a product. 

2. There are new, faster, assembly stations on the market. How will the manufactory 

perform with these new stations? 

3. Are the current delivery intervals and queue sizes optimal or should they be modified? 

Considering the nature of the manufacturing process and the questions (objectives), we can 

conclude that performing a simulation study is an appropriate way to answer them. This is in 

particular because: 

 There is no suitable analytical solution. There are several random processes and the 

whole process is not simple enough to be solved by the queuing theory. 

 It is feasible to construct a simulation model with enough detail to be a satisfactory 

representation of real situation. Preliminary measurements revealed that the random 

processes approximately follow existing theoretical random distributions, so it seems 

that the whole system can be modelled as a stochastic timed discrete-event model. 

 It is impossible to perform the required experiments with the real manufactory. The 

manufactory management will not allow putting more sets/products on the assembly 

line because of the safety reasons. The second question is about new equipment and 

even borrowing it and putting into the line is too expensive. The third question can 

possibly be answered for the current configuration but not for the proposed ones. 

The simulation study will proceed according to the following project plan: 

1. Acquisition of real data about duration of individual phases of the manufacturing process 

and related information. As usual, the real life situation differs from estimated values and 

values given by corresponding documentation. And there are also occasional events such 

as a jammed conveyor or a failed attempt to pick up a product by the crane. Because of 

this we cannot use the values specified in section VI.8.1 directly. We have to obtain data 

from the actual manufacturing process. For this we can use historical data, recorded by 

the manufactory staff and/or perform new measurements. 

2. Analysis of the acquired data in order to determine whether they fit or not into some 

existing random distributions. 
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3. Selection of a proper type of simulation model on the basis of the acquired data and their 

analysis. In this case it will be found out that a discrete-event model is appropriate and it 

will be realized as a timed coloured Petri net.  

4. Creation of the simulation model. A timed CPN model of the manufacturing process is 

created. The model should be designed in such a way that it will be easy to modify it 

according to the simulation study objectives. 

The timed CPN can be considered a language for specification of mathematical models of 

discrete event systems. These models have a benefit of being executable, so they can be 

simulated without a translation to another form. Therefore this step replaces the steps 

“model conceptualization”, “model translation” and “verification” from section I.3. To be 

more concrete, this new step is a replacement of the model conceptualization, the model 

translation is performed automatically by CPN Tools and therefore the verification is not 

necessary. 

5. Validation of the simulation model with respect to the acquired data. We perform 

simulations with the model and compare simulation results with the acquired data. If 

they match we can consider the model validated. 

6. Modification of the model according to required optimisation. We modify the model to 

reflect desired optimisation. 

7. Evaluation of changes by simulation experiments. We run simulations of the modified 

model(s) and by analysis of their results evaluate given optimization. 

8. Repetition of previous two steps. We repeat previous two steps until satisfactory 

optimisation will be reached. 

9. Formulation of suggestions of the basis of the study results. We summarize the study 

results and prepare suggestions for the manufactory management about what to change 

in the workflow. 

VI.8.3 Data Collection and Analysis 

Let us assume that we had collected sufficient data about the manufacturing process and from 

these data we concluded that the real performance of individual phases of the process only 

approximately follows the data given in section VI.8.1. After detailed analysis of the data we 

found out that they are close enough to existing probability distributions, so we can use these 

distributions to describe duration of the phases. Most of them fit normal distributions, but there 

are some exceptions. 

How these distributions are derived from the collected data we show on the duration of the 

product assembly: According to the official documentation this should take 67 seconds, but 

measurements and historical data showed varying results. Assume that we collected 249792 

values, ranging from 59 to 79 and with the average of 68.405 seconds. A tool that is very useful in 

finding out whether a set of values fits some theoretical existing probability distribution is a 

histogram, i.e. a graph showing count (frequency) of each value in the dataset. The count can be 

seen in the second row (Count) of Table 4 and the histogram in Figure 45. The shape of the 

histogram looks promising; it is close to a normal distribution with mean 68 and variance around 

8. 
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Value 59 60 61 62 63 64 65 66 67 68 69 

Count 115 397 1175 3027 6368 5304 19692 22276 34436 37637 35091 

Prob. 0.0005 0.0016 0.0047 0.0121 0.0255 0.0212 0.0788 0.0892 0.1379 0.1507 0.1405 

 

Value 70 71 72 73 74 75 76 77 78 79 

Count 28190 20709 14805 15943 2846 1187 426 122 35 11 

Prob. 0.1129 0.0829 0.0593 0.0638 0.0114 0.0048 0.0017 0.0005 0.0001 0.0000 

 

Table 4. Frequency and probability of individual values from collected dataset of assembly 

durations. 

To investigate this further we derive the probability density function (𝑝𝑑𝑓) of the dataset.  This 

can be done using the formula ( 74 )  

𝑝𝑑𝑓(𝑣𝑎𝑙) = 𝑐𝑜𝑢𝑛𝑡(𝑣𝑎𝑙)/𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑢𝑛𝑡, ( 74 ) 
 

where 𝑐𝑜𝑢𝑛𝑡(𝑣𝑎𝑙) is the frequency for a value 𝑣𝑎𝑙 (e.g. 5304 for 64) and 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑢𝑛𝑡 is the size 

of the dataset (e.g. 249792). Values of pdf for our dataset are shown in the third row (Prob.) of 

Table 4. 

  

Figure 45. Histogram for collected dataset of assembly durations. 

The shape of the pdf can be seen in Figure 46 (blue curve). After comparing the curve to known 

distributions we conclude that it is closest to the normal distribution with mean 68 and variance 

7 (red curve in Figure 46). 
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Figure 46. Probability density function of the dataset (blue curve) and normal distribution with 

mean 68 and variance 7. 

Using this process we obtain distributions for all delays (durations). Let us assume that they are 

(measured in seconds): 

 Normal distribution with mean 3550 and variance 765 for package delivery. Although it 

never happened during our measurements, employees of the manufactory told us that 

approximately in one of 6000 cases the delivery fails, so the time needed is doubled. As 

they were not able to provide any further details about these failures, we will assume 

that they are uniformly distributed. 

 The time needed to unpack one set of parts and put it into the input queue can be best 

described as consisting of two parts. The first one is fixed, to 46 seconds, and the second 

one is characterised by the exponential distribution with mean 3. 

 Discrete uniform distribution from 5 to 6 for the removal from the input queue. 

 Normal distribution with mean 25 and variance 4 for the transportation by the first 

conveyor and with mean 20 and variance 2 for the transportation by the second one. 

 As we already know, normal distribution with mean 68 and variance 7 for the duration of 

the product assembly. 

 The value 5 plus a value from the exponential distribution with mean 1 for the pickup of 

the product by the crane. The second value reflects occasional problems with the pickup. 

 Normal distribution with mean 64 and variance 3 for the movement of the crane from the 

end of the line to the packaging station, with mean 46 and variance 2 for the movement 

in the opposite direction and with mean 6 and variance 1  for releasing the product. 

 Normal distribution with mean 123 and variance 17 for the product packaging. 

An interested reader can find more information about how to choose probability distributions for 

simulation models in (Law, 2012). 
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VI.8.4 Model Creation 

Now we are ready to pick up a proper type of model for our simulation study. Because all key 

processes of the system (approximately) follow existing theoretical random distributions, the  

 

Figure 47. Graph of the manufactory workflow CPN model. 
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whole system can be modelled as a stochastic timed discrete-event model. We will specify the 

model as a timed CPN and use CPN Tools software for simulation. Transitions of the model will 

represent key events of the manufacturing process (workflow) and tokens will carry data 

necessary to record durations of individual phases of the process. These durations will be 

recorded by monitors of the model. One time unit in the model will be equal to one second. 

The graph of the model is shown in Figure 47. It is divided in four parts, distinguished by different 

colours: 

 The blue part models the package delivery, unpacking of the packages and putting sets of 

parts to the input queue and the first conveyor (steps 1 and 2 of the description in 

section VI.8.1). 

 The black part models the assembly line (step 3 from section VI.8.1). 

 The brown part models the crane (step 4). 

 The green part models the output queue and product packaging (step 5). 

As the capability of the warehouse and delivery to it will be sufficient even after the optimization, 

this part of the process (step 6 from section VI.8.1) is not modelled. The arcs without arc 

expressions visible have arc expressions “()” and places without colour set visible have “UNIT” 

as the colour set.  

The CPN model uses colour sets UNIT, UNITtm and INTINFtm, defined as in Figure 39 and 

new colour sets PRD, PRDtm and PRDlstTm (Figure 48). 

 colset PRD = record 

   id:INT * 

   delivered:INTINF * 

   unpacked:INTINF * 

   startMovingCB1:INTINF * 

   startAssembly:INTINF * 

   startMovingCB2:INTINF * 

   stopMovingCB2:INTINF * 

   startMovingCrane:INTINF * 

   stopMovingCrane:INTINF * 

   startWait4pack:INTINF * 

   startPackaging:INTINF; 

 

 colset PRDtm = PRD timed; 

 colset PRDlstTm = list PRD timed; 

 

Figure 48. Declarations of new colour sets of the manufactory workflow CPN model from Figure 

47. 

The record colour set PRD is used for tokens that carry information about time of important 

events during the product (set of parts) lifetime. These data are then used by data collector 

monitors of the net. The set PRDtm is a timed version of PRD and PRDlstTm is a list of records 

of PRD type, again timed. 
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The net also uses a couple of constants ( 

Figure 49) and variables (Figure 50). 
 

   val SetsInDelivery = 50; 

   val InQCap = 50; 

   val Emp2unp1set=2; 

   val TtlEmpl4unp = 2; 

   val OutQCap = 50; 

   val TtlEmpl4p = 2; 

   val Emp2p1pr=2; 

 

Figure 49. Declarations of constants of the CPN model from Figure 47. 

The constant SetsInDelivery defines the number of sets of parts in one delivery, InQCap  

the capacity of the input queue, Emp2unp1set the number of employees needed to unpack 

one set of parts and put them to the input queue and TtlEmpl4unp the total number of 

employees assigned to the task of unpacking the sets of parts and putting them to the input 

queue. OutQCap is the capacity of the output queue,  TtlEmpl4p is the total number of 

employees assigned to the task of taking the finished products from the output queue and 

subsequent packaging and Emp2p1pr is the number of employees needed to take a product 

from the output queue and pack it. 

   var p:PRDtm; 

   var pq:PRDlstTm; 

   var tm:INTINFtm; 

   var pp:INT; 

   globref nextPrdId=0; 

 

Figure 50. Declarations of variables of the CPN model from Figure 47. 

The variable p is the most frequent in the model; it is used on every arc where a token 

representing a set of parts or a product is processed, pq is used for lists (queues) of products or 

sets of parts. The last one, nextPrdId, differs from the rest in being a global variable. This 

means that its value is not reset before each transition firing. It is used to assign id to a set of 

parts or a product and its value is updated by the command  

action inc nextPrdId, 

associated with the finish_unpack1set transition. 

To make the model more readable, most expressions that need to be computed are specified in 

the form of CPN ML functions with self-explanatory names. These functions can be divided into 

two groups: 

1. Delay functions, which compute durations of corresponding process phases using the 

probability distributions defined in section VI.8.3. To compute durations they use build-in 

probability functions from CPN ML and functions normTime and expTime (Figure 39). 
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2. Token update functions, which update fields in a record of PRD type. Usually only one 

field is updated with the value of current simulation time. Other fields are copied. 

 fun nextDeliveryTm()= 

   let  

     val failRate = (if discrete(1,6000)=1 then 2 else 1) 

   in  

     failRate*normTime(3550,765) 

   end 

 

Figure 51. Declaration of the CPN ML function nextDeliveryTm. 

The delay functions are as follows: 

 nextDeliveryTm() – returns the time after which a new delivery will arrive. This 

function combines the discrete uniform distribution (function discrete from CPN ML) 

for delivery failure with normal distribution (function normTime). Its code is as listed in 

Figure 51. 

 unpackTm() – returns time needed to unpack one set of products and put it into the 

input queue. It is defined as fun unpackTm() = 46+expTime(3). 

 iqRemTm()– returns the time needed to take a set from the queue and put it to the 

first conveyor belt of the assembly line. It is defined as  

fun iqRemTm() = discrete(5,6). 

 moveCB1Tm() – returns the time it takes to move a set of parts by the first conveyor. It 

is defined as fun moveCB1Tm() = normTime(25,4). 

 assmblTm()– returns the time it takes to assembly one product from one set of parts. 

It is defined as fun assmblTm() = normTime(68,7). 

 moveCB2Tm()– returns the time it takes to move a product by the second conveyor. It 

is defined as fun moveCB2Tm() = normTime(20,2). 

 moveCrN2STm() – computes the time needed to move the crane with a product from 

north to south. The value returned by this function also includes the time needed to pick 

up the product and takes into account the fact that sometimes the attempt to pick up a 

product is not successful. Its code is  

fun moveCrN2STm()  = 5+expTime(1)+normTime(64,3). 

 rlsCrTm() – returns the time needed to release a product by the crane at the 

packaging station. Its code is fun rlsCrTm() = normTime(6,1). 

 moveCrS2NTm() – computes the time needed to move the empty crane from south to 

north. Its code is fun moveCrS2NTm()  = normTime(46,2). 

 packTm() – returns time needed to take one finished product from the output queue 

and pack it. It is defined as fun packTm() = normTime(123,17). 

There are eight token update functions in the model: 
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 setIdUnpacked(pd)- assigns a new id to a set of products (and corresponding 

product after assembly) pd and records the time when it was unpacked into the variable 

unpacked. The code of the function can be found in Figure 52. 

 setStartMvCB1(pd) - records the time when the corresponding set of parts pd 

begun its movement on the first conveyor belt (i.e. updates the field startMovingCB1 

with time()). 

 setStartAss(pd) - records the time when the assembly of the corresponding 

product  pd started (i.e. updates the field startAssembly with time()). 

 setStartMvCB2(pd) - records the time when pd begun its movement on the second 

conveyor belt (i.e. updates the field startMovingCB2 with time()). 

 setStopMvCB2(pd) - records the time when pd finished its movement on the second 

conveyor belt (i.e. updates the field stopMovingCB2 with time()). 

 setStartMvCr(pd) - records the time when pd was picked up by the crane (field  

startMovingCrane). 

 setStopMvCr(pd) - records the time when the crane had stopped moving with the 

corresponding product pd but before it dropped it (field  stopMovingCrane). 

 setStartWait4pack(pd) - records the time when  pd was put into the output 

queue (field startWait4pack). 

 setStartPack(pd) - records the time when packaging of the corresponding product 

pd started (field startPackaging). 

  fun setIdUnpacked(pd:PRD)= 

  {  id= !nextPrdId,  

     delivered=(#delivered pd),  

     unpacked=time(),  

     startMovingCB1=(#startMovingCB1 pd),  

     startAssembly=(#startAssembly pd),  

     startMovingCB2=(#startMovingCB2 pd), 

     stopMovingCB2=(#stopMovingCB2 pd),  

     startMovingCrane=(#startMovingCrane pd),  

     stopMovingCrane=(#stopMovingCrane pd),  

     startWait4pack=(#startWait4pack pd),  

     startPackaging=(#startPackaging pd) 

  } 

 

Figure 52. Declaration of the CPN ML function setIdUnpacked. 

As it can be seen in Figure 47, the initial marking of the net represents a situation where the 

manufactory is ready to accept the first delivery (a token with the value 0 and timestamp 0 in the 

place delivery_ready), both queues are empty (fifty tokens in the place 

input_queue_freeCap and in output_queue_freeCap), two employees are ready to 

unpack sets of parts (two tokens in the place empl2unpack) and another two to pack finished 

products (two tokens in empl2pack), the crane is waiting empty at the packaging station (a 

token in waitS_empty) and the assembly line is empty, too (a token in lineEmpty). Two 

transitions are enabled: delivery_acceptance and start_moveS2N. 
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A firing of delivery_acceptance means that a newly arrived delivery of sets of parts is 

accepted for unpacking. This can happen only when there are no sets to be unpacked from the 

previous delivery. This is why the transition delivery_acceptance is connected to the place 

sets_unpacked, which holds a token for each unpacked set from the previous delivery. The 

firing of delivery_acceptance adds a token for each set to the place sets2Unpack and 

one token with a timestamp equal to the time of the next delivery arrival to next_delivery. 

This is because the firing also means a start of unpacking and ordering of a new delivery. Arrival 

of the next delivery is represented by a firing of delivery_arrival. This creates a new token 

in delivery_ready. The token stores the time of its creation and this value is used to 

compute difference between the time of arrival and acceptance. 

The tokens in sets2Unpack have the time of their creation, i.e. the time of the delivery of 

given set, stored in the field delivered.  An unpacking of a set starts with a firing of 

start_unpack1set and ends with a firing of finish_unpack1set, which adds a (token 

representing a) set of parts to the input queue, modelled by the token in the place 

input_queue. This token is a list and is handled in exactly the same way as the one in the 

place CustomerQueue in the net from Example 17. Tokens in empl2unpack stand for 

employees that can be used for the unpacking and input_queue_freeCap holds a token for 

every free place in the input queue. A token in unpacking is a set of parts being unpacked. 

By a firing of take_parts a set of parts is taken from the input queue and put on the first 

conveyor. Of course, this can happen only when the assembly line is empty (i.e. there is a token 

in lineEmpty). After this, the set waits (as a token in wait_CB1) to be moved by the first 

conveyor. The movement starts with firing start_mvCB1 and ends by firing finish_mvCB1. 

The set during the movement is represented by a token in moving_parts. After the conveyor 

the set waits (in wait_ass) to be assembled. The assembly starts by a firing of 

start_assmbl, ends by a firing of finish_assmbl and a token in assmbl is a product 

being assembled. The second conveyor is modelled similarly to the first one (places wait_CB2 

and moving_product and transitions start_mvCB2 and finish_mvCB2). The second 

conveyor delivers the product to the end of the assembly line, where it waits (in wait_crn) to 

be taken by the crane. 

After waiting, the product is picked up by the crane (a firing of 

pickup_and_start_moveN2S), which immediately begins to move it to the packaging 

station. The firing of this transition also means emptying of the assembly line and the time of the 

firing is recorded into a newly created token in lineEmpty. The product during the movement 

of the crane is represented by a token in movingN2S and the movement is finished by a firing of 

finish_moveN2S. Then the product waits in waitS_wProd to be released to the output 

queue by a firing of putDown_product. This can only happen when the output queue is not 

full (i.e. there is at least one token in output_queue_freeCap). The released product is 

represented by a token in releasing_prod and its insertion to the output queue by a firing of 

add2Oq. A movement of the crane back from the packaging station to the assembly line is 

modelled by transitions start_moveS2N and finish_moveS2N and places movingS2N 

and waitN_empty. 



81 
 

Finally, the product is packaged at the packaging station. The output queue is a token in the place 

output_queue, which is treated in a way similar to the one in input_queue. The packaging 

process starts with a firing of start_packing and ends with a firing of finish_packing. A 

product during the process is modelled by a token in packing and tokens in empl2pack stand 

for employees that do the packing. For each packed product the counter, represented by a token 

in produced_products, is increased by one. 

VI.8.5 Monitors for the Simulation Model 

To perform validation and simulation experiments we need to add monitors to our model. All but 

one are data collector monitors and most of them measure duration of individual phases of the 

manufacturing process. They are described in section VI.8.5.1. The last one is a breakpoint 

monitor and it is discussed in section VI.8.5.2.  

VI.8.5.1 Data Collector Monitors  

These monitors can be divided into four groups, identified by prefixes of their names: 

1. Queue length measurement (prefixes ql1 and ql2). Their primary purpose is to acquire 

data needed to answer the 3rd question formulated in section VI.8.1. 

2. Overall time measurement (prefixes ta1 and ta2). They measure duration of two basic 

phases of the manufacturing process: waiting before unpacking and the manufacturing 

process itself –from unpacking of a set of parts to packing of the finished product. They 

are important for all three questions from section VI.8.1, the first of them especially for 

the 3rd question. 

3. Detailed time measurement (prefixes tp1 to tp6). These monitors focus on some 

phases of and delays during the manufacturing process. They are especially important for 

answering the 1st and the 2nd question from section VI.8.1. 

4. Token value measurement (prefix v1). This group contains only one monitor, which 

records values of tokens from the place produced_products. It is important with 

respect to the 1st and the 2nd question. 

Names and purpose (i.e. what value they record) of the monitors are listed in Table 5 and more 

details about them can be found in Table 6. The third column of Table 6 contains a new code that 

replaces “0” in the generated observer (the function obs) of the monitor. For example, if the 

generated code is 

fun obs (bindelem) = let 

  fun obsBindElem (Top'finish_mvCB2 (1, {p})) = 0 

    | obsBindElem _ = ~1 

in obsBindElem bindelem end 

and the corresponding cell in the third column contains “time() - #startMovingCB1 p” 

then the code of the observer is 

fun obs (bindelem) = let 

  fun obsBindElem (Top'finish_mvCB2 (1, {p})) =  

                         time() - #startMovingCB1 p 

    | obsBindElem _ = ~1 
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in obsBindElem bindelem end 

 

Monitor Recorded value 

ql1_inQueueAfterIns Number of items in the input queue after a set of parts is 

added to it. 

ql2_outQueueAfterIns Number of items in the output queue after a finished product 

is inserted into it. 

ta1_DelArr2StartUnp The time a new delivery of sets of parts has to wait to be 

accepted for unpacking after it arrives. 

ta2_StartUnp2EndPck The total time needed to produce one product, i.e. the time 

from the moment when given set of parts starts to be 

unpacked to the moment when packing of the product 

assembled from the set is finished. 

tp1_LineWt4Parts The time the empty assembly line has to wait for a set of 

parts. This value will be greater than 0 if the assembly line is 

empty and there is no set of parts waiting in the input queue. 

tp2_PartsWt4Line The time a set of parts has to wait in the input queue for being 

put on the assembly line. 

tp3_OnAssLine Total time a set of parts and corresponding product spend at 

the assembly line – from being loaded on the first conveyor, 

through the assembly to reaching the end of the second 

conveyor. 

tp4_CrWt4Prd The time the crane has to wait for a product to arrive at the 

end of the assembly line (i.e.  the end of the second conveyor). 

tp5_PrdWt4Cr The time a product has to wait for the crane at the end of the 

assembly line. 

tp6_Wt4CrRls The time the crane has to wait with a product at the packaging 

station before releasing it. Only the full output queue can 

cause this value to be greater than 0. 

v1_products Number of products produced from beginning of given 

simulation run to the moment when packing of a new product 

is finished. 
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Table 5. Data collector monitors of the net from Figure 47. 

     

Monitor Associated transition New code in obs 

ql1_inQueueAfterIns finish_unpack1set (length pq)+1 

ql2_outQueueAfterIns add2Oq (length pq)+1 

ta1_DelArr2StartUnp delivery_acceptance time()-tm 

ta2_StartUnp2EndPck finish_packing time() - #delivered p 

tp1_LineWt4Parts take_parts time()-tm 

tp2_PartsWt4Line take_parts time() - #unpacked p 

tp3_OnAssLine finish_mvCB2 time() - #startMovingCB1 p 

tp4_CrWt4Prd pickUp_and_start_moveN2S time()-tm 

tp5_PrdWt4Cr pickUp_and_start_moveN2S time() - #stopMovingCB2 p 

tp6_Wt4CrRls 
putDown_product 

time() - #stopMovingCrane 

p 

v1_products finish_packing pp+1 

 

Table 6. Details of data collector monitors of the net from Figure 47. 

VI.8.5.2 Breakpoint Monitor 

The purpose of the one breakpoint monitor, named endSimAfterOneShift, is to limit 

duration of each simulation run. This duration will be equal to one shift in the manufactory, 

which is 8 hours (28800 seconds) long. To make this length easily adjustable we add a constant 

shiftDuration, declared as 

val shiftDuration:INTINF  = 28800; 

The monitor endSimAfterOneShift can be associated with any place of the net, because it 

only checks whether the simulated time reached the value defined by shiftDuration. 

However, the monitor should not be associated with any transition as we want it to be run after 

each simulation step. As in the case of the monitor Served300Customers from Example 18, 

only the code of the predicate function has to be modified: 

fun pred(Top'next_delivery_1_mark:UNITtm tms)= 

time()>=shiftDuration. 
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VI.8.6 Validation 

After completion of monitors the model is ready for simulation. First simulation runs are used to 

validate the model (step 5  of the project plan): we simulate the model with all parameters set as 

described in the previous section and compare it to the data collected before. Table 7 lists results 

of 30 simulation runs, where each simulation run equals to one 8 hours shift (thanks to the 

breakpoint monitor). For all measures except the last one the value in the column “Minimum” is 

the minimum of minima of individual simulation runs, in “Maximum” the value is maximum of 

maxima and in the last one average of averages. In the case of the last measure all three values 

are computed from maxima of individual simulation runs. This is because the number of products 

manufactured during one shift is equal to the maximal value recorded by monitor 

v1_products during one simulation run. For identifiers of the measures we use prefixes of the 

monitors used to obtain their values. 

 

Measure (id) Minimum Maximum Average 

Number of items in the input queue (ql1) 1 50 41,3 

Number of items in the output queue (ql2) 1 3 1,1 

New delivery waiting time for unpacking (ta1) 0 2649 1113,29 

Total production time per product (ta2) 351 12762 7131,24 

Assembly line waiting time for parts (tp1) 0 55 0,2 

Parts waiting time for assembly line (tp2) 0 6134 4781,21 

Time on the assembly line per product (tp3) 100 128 112,97 

Crane waiting time for a product pickup (tp4) 0 130 1,08 

Product waiting time for the crane (tp5) 0 20 4,08 

Crane waiting time for a product release (tp6) 0 0 0 

Number of products produced per shift (v1) 231 233 231,67 

 

Table 7. Data gathered from 30 simulation runs of the net from Figure 47. 

Let us assume that these simulation results match the collected data, so the model is validated 

and we can proceed to simulation experiments. If not, the model has to be adjusted and 

simulated again until the match is achieved. 
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VI.8.7 Simulation Experiments and Analysis of Results 

The model is validated, so we can perform simulation experiments that will provide answers to 

the three questions stated in section VI.8.2. To do this, we modify the simulation model 

accordingly (step 6 of the project plan), run simulations and analyse their results (step 7) and 

repeat these two steps if necessary (step 8). 

VI.8.7.1 Experiment 1: More Products on the Line 

The first experiment should answer the question 1, namely whether allowing two products on 

the assembly line will speed up the whole manufacturing process significantly. In section VI.8.2 

we specified two options for this speed-up: 

a. The next set of parts is put on the line when the assembly of the previous one is 

completed.  

b. The next set of parts is put on the line when the assembly of the previous one starts. 

Both options require changes in the part of the simulation model that represents the assembly 

line. Changed parts are shown in Figure 53 and Figure 54, where new nodes (2 places) and arcs 

are rendered in red. The place lineEmpty is renamed to lineReady4NxtSet as the original 

name no more reflects the reality.  

We also added a new monitor, ms1_waiting4CB2, which records number of tokens in the 

place wait_CB2 after each firing of its adjacent transitions (finish_assmbl and 

start_mvCB2). This is because we anticipated accumulation of tokens (assembles products) in 

this place. The new monitor is so-called marking size monitor. It is a special case of the data 

collector monitor and in CPN Tools it can be created by selecting “Mark Size” on the “Monitoring” 

palette and clicking on the corresponding place. No code modification is necessary. 

 

Figure 53. A part of the graph of the CPN model for Experiment 1, option a, which differs from the 

model in Figure 47.  
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Figure 54. A part of the graph of the CPN model for Experiment 1, option b, which differs from the 

model in Figure 47. 

Results of simulation experiments with both modified models can be seen in Table 8. Here 

columns 2 to 4 are the results from the first model, columns 5 to 7 from the second one. Minima, 

maxima and averages are computed in the exactly same way as in Table 7. Now we analyse the 

results by comparing them to the ones in Table 7. We can see that allowing two products on the 

line doesn’t bring any advantage at all. The number of products produced per shift (measure v1) 

is almost exactly the same: the average is slightly higher (231,76 or 231,73 to 231,67), but the 

maximal number of products remains the same (233). After more detailed analysis it becomes 

clear that the crane is too slow now and products are accumulating before the second conveyor 

(measure ms1). And we should also take into account that in reality the process can be even 

slower, because in this experiment we assume that there are no additional delays caused by the 

accumulation. So, the conclusion is that without speeding up the crane it makes no sense to 

allowing more products on the assembly line. 

VI.8.7.2 Experiment 2: Two Products on the Line and Faster Crane and Packing 

The second experiment should start where the first one finished and evaluate an effect of a 

faster crane. However, a quick look on the packing duration reveals that speeding up the crane 

will not be enough: The mean of the packing duration is 123, so if we assume that to pack one 

product we need exactly 123 seconds then we will be able to pack at most 234 products during 

one shift (28800 seconds). Therefore the packaging station will become the bottleneck of the 

system after speeding up the crane. 

Let us assume that after consulting the manufactory management the following maximal 

speedup has been estimated: 

 duration of crane movement from the end of the line to the packaging station to mean 

38 and variance 2  (from 64 and 3), 

 duration of crane movement in the opposite direction to mean 35 and variance 2 (from 

46 and 2) and 

 duration of packing one product to mean 90 and variance 11 (from 123 and 17). 
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Measure (id) Option a. Option b. 

Min. Max. Average Min. Max. Average 

Number of products waiting for 

the 2nd conveyor (ms1)  

0 57 27,07 0 177 90,61 

Input queue size (ql1) 1 50 39,62 1 1 1 

Output queue size (ql2) 1 4 1,53 1 4 1,55 

New delivery w. t. for unp. (ta1) 0 1470 468,90 0 0 0 

Total prod. t. per prod. (ta2) 347 24180 7598,47 355 28426 6191,94 

Ass. line w. t. for parts (tp1) 0 60 0,17 8 1246 40,1 

Parts w. t. for ass. line (tp2) 0 4945 3679,08 0 0 0 

T. on ass. line per prod. (tp3) 104 21021 2337,39 102 27316 4621,83 

Crane w. t. for prod. p.up (tp4) 0 135 0,52 0 128 0,51 

Prod. w. t. for the crane (tp5) 0 116 100,8 0 113 101,4 

Crane w. t. for prod. rel. (tp6) 0 0 0 0 0 0 

Products produced per shift (v1) 231 233 231,76 231 233 231,73 

 

Table 8. Data gathered from experiment 1 (30 simulation runs of the nets for options a and b). 

As both options led to similar results in the previous experiment, this one was performed only for 

the safer one, the option a. Results can be seen in the last three columns of Table 9, its columns 2 

to 4 repeat results from  Table 8 for better comparison. The most significant changes are in bold. 

The results show significant increase in production, from 231 to 290. Also important is that at 

most one product waits for the second conveyor (measure ms1), so we do not need to add any 

form of stack or queue before the conveyor. From measures tp4 and tp5 we see that the crane 

usually has to wait for a product while a product almost never waits for the crane. This means 

that the crane, and possibly also the packaging station, are little bit faster than necessary now. 

After some more experiments (which we will not describe in detail here) we found out that with 

 duration of crane movement from the end of the line to the station set to mean 45 and 

variance 2, 
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 duration of crane movement in the opposite direction set to mean 40 and variance 2 and 

 duration of packing one product set to mean 99 and variance 11  

we achieve almost the same number of products per shift, 288 products on average (minimum is 

287 and maximum is 289). 

Measure (id) Opt. a. (exp.1) Opt. a. with speedup. (exp.2) 

Min. Max. Average Min. Max. Average 

No. of prd. wait. for CB2 (ms1)  0 57 27,07 0 1 0 

Input queue size (ql1) 1 50 39,62 1 50 39,33 

Output queue size (ql2) 1 4 1,53 1 1 1 

New delivery w. t. for unp. (ta1) 0 1470 468,90 0 1462 450,87 

Total prod. t. per prod. (ta2) 347 24180 7598,47 292 10223 5567,04 

Ass. line w. t. for parts (tp1) 0 60 0,17 0 54 0,16 

Parts w. t. for ass. line (tp2) 0 4945 3679,08 0 4951 3643,84 

T. on ass. line per prod. (tp3) 104 21021 2337,39 99 126 113 

Crane w. t. for prod. p.up (tp4) 0 135 0,52 0 141 13,93 

Prod. w. t. for the crane (tp5) 0 116 100,8 0 2 0 

Crane w. t. for prod. rel. (tp6) 0 0 0 0 0 0 

Products produced per shift (v1) 231 233 231,76 288 291 290 

 

Table 9. Data gathered from experiment 2 (30 simulation runs of the net for option a) compared 

to experiment 1. 

VI.8.7.3 Experiment 3: Faster Assembly Station 

To answer the second question from section VI.8.2, wherever a replacement of the assembly 

station with a faster one will lead to more products manufactured, we take the original model 

and modify values (68 and 7) in the assmblTm according to the parameters of the new station. 

Then we run simulations, which will lead to the results similar to the experiment 1. That is, the 

number of products produced per shift will remain the same because of the slow crane and 

packaging station. Only after changes similar to the ones in the experiment 2 the utilisation of the 

new assembly station will lead to increased production. For example, with the new station two 

times faster than the old one, the manufactory will produce about 318 products per shift. 
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VI.8.7.4 Experiment 4: Evaluation of Queue Sizes and Delivery Intervals 

As the last question from section VI.8.2 is all about the original manufacturing process, it seems 

that answering it doesn’t require any modifications of the original simulation model and we can 

work with the results from Table 7. From these results we see that: 

 The input queue holds 39,62 sets on average (measure ql1) and detailed analysis of the 

data collected by the monitor ql1_inQueueAfterIns shows that it becomes fully 

occupied after approximately 2 hours from the start of the shift.  

 The output queue is rarely used, usually there is only one product and the maximal 

number of products it holds is 3 (measure ql2).  

It seems that the output queue can be completely eliminated and to verify this we reduce its 

capacity to 1 (i.e. we set the constant OutQCap to 1) and run simulations. Results will confirm 

our assumption, the number of products produced per shift will be 231,5 on average, the 

minimal number will remain 231 and the maximal number will be 232. 

 

 

Figure 55. A part of the graph of the CPN model for Experiment 4, which differs from the model in 

Figure 47. 

To evaluate the delivery intervals we can use data gathered by the monitor 

ta1_DelArr2StartUnp (measure ta1 in Table 7). But they reveal only half of the information 

we need. They tell us when and for how long a newly arrived delivery has to wait to be accepted 

for unpacking, in other words they show us when the delivery intervals are too short. However, 

we do not have a monitor that records when this interval is too long, i.e. when the manufactory 

waits for a new delivery. To be able to create such a monitor we need to add a new place 

time_lastUnp to the blue part of the model (Figure 55, new parts are purple). This place will 

hold the time of the last unpacking. The monitor itself, named ta1a_UnpWt4Del, will be 

associated with the transition delivery_acceptance. The new code in its observer will be 
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time()-tm1. The variable tm1 is a new variable of the type INTINFtm. There are 6 deliveries 

during one shift and the data collected for them can be seen in Table 10. Results from other 

simulation runs are very similar. 

Delivery no. 1 2 3 4 5 6 

Time of delivery 0 3574 7140 12198 18324 24468 

Delivery waits for unpacking 

(ta1_DelArr2StartUnp) 
0 0 0 1470 2594 2582 

Manufactory waits for 

delivery 

(ta1a_UnpWt4Del) 

0 1158 1093 0 0 0 

 

Table 10. Data about delivery intervals from one simulation run. 

From this analysis we can draw the following recommendation for the manufactory 

management: 

 The input queue can remain as it is. 

 The output queue can be completely eliminated. 

 The second and third delivery should be ordered about 10 minutes sooner. 

 The fourth delivery can be ordered about 23 minutes later and the last two deliveries 

about 40 minutes later. 

VI.8.7.5 Further experiments 

The experiments presented here are not the only ones that can be performed with the simulation 

model. Another experiment can estimate how much the number of employees needed for 

packing and unpacking can be reduced without affecting overall effectivity of the process. For 

example, we can unite places empl2unpack and empl2pack and observe whether the both 

unpacking and packing can be performed by common, reduced, group of employees.   

VI.8.8 Documentation  

To consider the simulation study completed it has to be well-documented. The documentation 

should be based on progress reports that are prepared several times (regularly or when some 

partial goal is achieved) and has to include a detailed description of the simulation model. We 

can say that the documentation of our study should contain most of what was written in the 

previous sections. Its outline can be as follows: 

1. Requirements. Specifies goals of the study, i.e. what a customer expects to be 

accomplished by the study. It should also describe the system that is the subject of the 

study. In our case the requirements are the three questions from section VI.8.2 and the 

study subject is described in section VI.8.1. 
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2. Input data analysis. Analysis of the data collected about the real system. This should 

result in selecting an appropriate type of simulation model and representation of 

processes. Section VI.8.3 contains such an analysis. All the collected data should be 

stored in some form (e.g.  a database), too.  

3. Simulation model description. Description of all the parts of the simulation model in such 

a detail that it allows any qualified person to understand, use and modify the model. For 

a CPN model this should contain a graph of the model, meaning of places and transitions 

and specification of used colour sets, constants, variables, functions and monitors. Here 

it is covered by sections VI.8.4 and VI.8.5. 

4. Simulation experiments report. For each experiment this part records changes in the 

simulation model we had to make in order to perform the experiment, simulation results 

and their analysis and conclusion. The conclusion usually contains answers to questions 

that led to the experiment or recommendations for the customer (see section VI.8.7). 

5. Conclusion. Overall conclusion of the study, based on the conclusions of individual 

experiments. It is a basis for an implementation of the study results and is covered by the 

next section.  

VI.8.9 Conclusion and Implementation 

In conclusion, our study recommends the following changes to be implemented in the 

manufactory. 

1. Elimination of the output queue. As the experiment 4 shown, this queue is seldom used 

and its removal has a minimal effect on the production (only one product less is 

produced per shift). 

2. Two products on the assembly line but only with faster crane and packaging station. 

According to the experiments 1 and 2, allowing two “products” (more exactly one set of 

parts and one product) on the assembly line at once can lead to increased production 

only when the speed of the crane and packaging station are increased. 

3. Faster assembly station, but only with faster crane and packaging station. Replacement 

of the assembly station will help only with a faster crane and packaging (experiment 3). 

Which of these recommendations will be implemented depends on the manufactory 

management, which has to consider a cost of and expected profit from the implementation.  
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