
Model-aware Language Specification with Java
Jaroslav Porubän, Sergej Chodarev

Abstract—Tools that support development of parsers often
concentrate on concrete syntax, leaving abstract syntax defined
only implicitly. On the other hand there are projectional language
workbenches that give central role to language model (abstract
syntax) at the cost of locking a language to the concrete tool.
In this paper we present YAJCo parser generator that uses
model-centered approach to language definition while preserving
textual representation. Abstract syntax of a language is expressed
using object-oriented model in a general-purpose language with
additional information and concrete syntax provided in form
of annotations. In the paper we describe how abstract syntax,
concrete syntax and semantics of the language are defined using
YAJCo. We also describe how this method supports language
composition and iterative development.

Index Terms—language patterns, abstract syntax, domain-
specific languages, parser generators, YAJCo

I. INTRODUCTION

Development of computer languages and parsers is a well-
researched topic. A lot of mature and established techniques
and tools exist that facilitate this problem. However, devel-
opment of a parser is still perceived as a hard problem and
many domain-specific languages are developed based on some
existing language. This led us to the development of a tool
that makes development of languages more convenient for
programmers with knowledge of object-oriented methodology.
This means that it must be less concerned on grammars and
parsing algorithms, but instead centered around definition of
a language domain model.

In most situations while developing language processor,
some kind of object-oriented domain model of the language
is defined. During the parsing, instance of this model is
created in memory based on input sentence as a collection
of interconnected objects. This model (called semantic model

by Fowler [1]) encapsulates all information needed to further
process the sentence.

In most cases, structure of the model closely corresponds to
language syntax. We can consider the model itself to represent
abstract syntax of the language as it contains definition of
language concepts and relations between them. This means
that the model itself already contains a lot of information about
syntax and can be used as a basis for language definition.

In our approach, the language model is expressed using
a general-purpose language (GPL). We chosen Java as a
widely used object-oriented language, although the approach
is more generic. GPL like Java already provides all means

This work was supported by VEGA Grant No. 1/0341/13 Principles
and methods of automated abstraction of computer languages and software
development based on the semantic enrichment caused by communication.

J. Porubän (jaroslav.poruban@tuke.sk) and S. Chodarev
(sergej.chodarev@tuke.sk) are with the Department of Computers and
Informatics, Faculty of Electrical Engineering and Informatics, Technical
University of Košice, Letná 9, 042 00, Košice, Slovakia.

for expressing object-models and also their semantics. In
addition, it is well understood by programmers and supported
by numerous tools lowering the learning costs. The tools allow
to solve many common tasks, like refactoring, without the need
to develop a special-purpose tooling (for example [2]).

The fact that language model is defined using “plain old
Java objects (POJO)” also means that it is independent from
parsing technology. This is in contrast with approaches based
on projectional editing, like JetBrains MPS [3], where defi-
nition of language model and all its aspects is locked in the
corresponding tool.

Object-model, however, does not contain definition of con-
crete syntax. This information can be added using annotations,
that provide general-purpose mechanism for adding metadata
to elements of the program. Therefore, annotations allow to
integrate formal description with GPL, making it suitable for
automatic analysis in a similar way as BNF or Petri nets [4].

We use this approach in a tool called YAJCo1 (Yet Another
Java Compiler Compiler) that allows to generate language
parser based on annotated model [5]. Our goal was not to
introduce new parsing methods. Instead, we integrated existing
methods into a tool that allows language developer to work
on higher level of abstraction with language definition that
is independent on parsing algorithm and based on abstract
syntax.

II. YAJCO OVERVIEW

As is obvious from the name of our tool, it relies on
Java as a language for definition of language model and its
semantics. Language model consists of annotated Java classes
and relations between them. The model corresponds to abstract
syntax of the language where each class represents a language
concept.

The architecture of YAJCo is depicted in Fig. 1. The tool
contains Java annotation processor that collects annotations
attached to classes and their elements. It constructs an internal
model of language definition based on that and uses it to
generate a parser. YAJCo is able to extract relations between
classes of the language model and infer part of language syntax
based on that. Missing information about concrete syntax is
derived from annotations.

This definition is used by YAJCo to generate parser spec-
ification for one of the existing parser generators. Currently
JavaCC (top-down) and Beaver (bottom-up) are supported
as backends making it possible to choose parsing algorithm
depending on the current needs.

Generated parser together with generated YAJCo language
processor can be used to parse language sentences. The result
of the parsing is an instance of the language model – instances

1The tool is available at https://code.google.com/p/yajco/

Annotated

Classes
Annotation

Processor

Specification

for Parser

Generator

Parser

Generator

(e.g. JavaCC)

YAJCo

Language

Processor

Generated

Parser

generates

generates generates

Language Processor
Language

Sentence
Abstract Syntax

Graph

instance of

Fig. 1. YAJCo architecture

of model classes interconnected to form an abstract syntax
tree corresponding to the input sentence. Moreover, YAJCo
supports automatic resolution of references in the language
sentences, so the output structure can be actually abstract
syntax graph.

Language semantics can be defined using methods of lan-
guage model classes. Alternatively it can be expressed in other
classes that would traverse language model, or it can be moved
into aspects using AspectJ as was shown in [6].

YAJCo can optionally generate other tools besides parser.
This includes pretty-printer that is able to generate textual
representation of provided object model according to the lan-
guage grammar. This operation is symmetric to the parsing and
makes YAJCo capable of both serialization and deserialization
of objects in a specified textual form. Another tool is a visitor
class that simplifies traversing the object graph.

The fact that described approach to language definition
concentrates on abstract syntax also simplifies language com-
position [7], [8]. The language can be extended by adding
concepts from other language and interconnecting them using
some relations. This allows to use powerful composition
mechanisms based on object-oriented and aspect-oriented pro-
gramming already provided by Java and AspectJ.

III. LANGUAGE DEFINITION USING YAJCO

Definition of language using YAJCo would be described
based on a simple example inspired by Karel the Robot
language [9]. The language consists of commands for robot
movement with possibility to define subprograms. Abstract
syntax of the language together with simple example of input
sentence is presented in Fig. 2.

The program allows to control movements of a robot. It
contains main part listing instructions for the robot, other
statements (like ITERATE loop) and calls to subprograms (like
turnright in the example).

For simplicity, class diagram of language model does not
contain complete definition of the expression sublanguage
that consists of several subclasses of the Expression class
corresponding to different arithmetic operations. There is also
only limited set of statements and instructions.

Listing 1 presents a part of the language definition. To
make it short, only several classes are presented including the
main class of the model – Program. This class has attached
@Parser annotation, specifying name of generated parser class
and lexical analyzer parameters.

Listing 1. Fragment of the Robot language definition
@Parser(

className = "yajco.robot.parser.Parser",

skips = {@Skip("[\\t\\n\\r]")},

tokens = {

@TokenDef(name = "IDENT", regexp = "[a-zA-Z]+"),

@TokenDef(name = "VALUE", regexp = "[0-9]+")

}

)

class Program {

Definition[] definitions;

Statement[] statements;

@Before("BEGINNING-OF-PROGRAM")

@After("END-OF-PROGRAM")

Program(Definition[] definitions,

@Before("BEGIN-OF-EXECUTION")

@After("END-OF-EXECUTION")

@Separator(";") @Range(minOccurs = 1)

Statement[] stmts) {

this.definitions = definitions;

this.statements = stmts;

}

void execute(Robot karel) {

for (Statement stmt : statements)

stmt.execute(karel);

}

}

abstract class Statement {

abstract void execute(Robot karel);

}

abstract class Instruction extends Statement {}

class Move implements Instruction {

@Before("move")

Move() {}

void execute(Robot karel) { karel.move(); }

}

The use of generated parser is shown in the next listing,
where a program is read from the file, parsed and its abstract
representation is created. Parsed program is then executed
using methods of its object model.

Parser parser = new Parser();

Program program = parser.parse(

new FileReader("karel.robot"));

program.execute(karel);

Abstract syntax of the language consists of definition of
language concepts and relations between them. In YAJCo
language concepts correspond to classes and therefore, for
each class corresponding non-terminal in the grammar is

DEFINE turnright AS

ITERATE 3+6-2*3 TIMES

turnleft

BEGIN-OF-EXECUTION

turnleft;

move;

turnright;

move;

move

END-OF-EXECUTION

Fig. 2. Abstract syntax and example sentence of the Robot language

defined.
In the next sections we will discuss individual relations

and properties of concepts and how YAJCo can use them to
construct the parser. We will use the example language to
demonstrate definition of each language property and will also
provide equivalent definition in EBNF when it is possible.

A. Inheritance relation – “is-a”

Extension of a class or implementation of an interface
indicates that one concepts is a special case of its parent
concepts, i.e. it can be used in all places where the parent
concept is expected. YAJCo automatically uses inheritance
relation between classes to construct appropriate grammar
rules.

For example, all instructions in the Robot language inherit
from the Instruction class. This defines a rule for Instruction

non-terminal with an alternative (see Fig. 3).

Instruction

Move TurnLeft

EBNF:
Instruction ::= Move | TurnLeft

Fig. 3. Definition of the inheritance relation in YAJCo and EBNF

B. Composition relation – “has-a”

A concept is composed from other concepts when de-
scription of concept instance in an input sentence includes
description of its subconcepts. In the grammar it is represented
by the occurrence of non-terminals of subconcepts on the
right-hand side of the rule corresponding to the composed
concept.

Let us take an ITERATE loop statement in the Robot
language. Its corresponding concept Iteration contains an

Iteration

Expression Statement

EBNF:

Iteration ::= Expression Statement

Fig. 4. Definition of the composition relation in YAJCo and EBNF

expression specifying number of iterations and a statement
specifying command that would be repeated (see Fig. 4).

In object-oriented language this relation can be expressed
using class fields that contain instances of subconcept classes.
Not all fields, however, correspond to composition relation.
Because of this, YAJCo uses parameters of class constructor
for the specification of subconcepts. This also provides greater
flexibility for definition of concrete syntax as it defines also
ordering of subconcepts. In addition, definition of composition
on constructors allows to do some preprocessing and store
subconcepts in different form.

C. Keywords and symbols

The simplest form of concrete syntax annotations is a
definition of keywords and symbols that must be part of
concept concrete representation. These tokens can be placed
before or after concept description using @Before and @After

annotations associated with concept constructor. Tokens can be
also placed between description of subconcepts by using the
same annotations on constructor parameters (see Listing 2).

Listing 2. Example of the keywords definition
Java:
class Iteration extends Statement {

int value;

Statement statement;

@Before("ITERATE")

Iteration(Expression expr,

@Before("TIMES") Statement statement) {

this.value = expr.eval();

this.statement = statement;

}

void execute(World world) {

for(int i = 0; i < value; i++)

statement.execute(world);

}

}

EBNF:

Iteration ::= <ITERATE> Expression <TIMES> Statement

D. Composition multiplicity

A concept can contain multiple instances of subconcepts.
This is automatically inferred from the use of array or one
of the standard Java collection types. The multiplicity can be
restricted using @Range annotation. There is also possibility
to specify tokens that must be placed between each instance of
subelement using the @Separator annotation (see Listing 3).

E. Alternative notations

It may be possible to describe instances of the same concept
using different notations and even with different combinations

Listing 3. Example of the composition multiplicity definition
Java:

@Before("BEGINNING-OF-PROGRAM")

@After("END-OF-PROGRAM")

Program(Definition[] definitions,

@Before("BEGIN-OF-EXECUTION")

@After("END-OF-EXECUTION")

@Separator(";") @Range(minOccurs = 1)

Statement[] stmts) {...}

EBNF:
Program ::= <BEGINNING-OF-PROGRAM>

Definition*
<BEGINNING-OF-EXECUTION>

Statement (<;> Statement)*
<END-OF-EXECUTION>

<END-OF-PROGRAM>

Listing 4. Example of alternative notations definition
Java:
@Before("ITERATE")

Iteration(Expression expr,

@Before("TIMES") Statement statement) {...}

@Before("ITERATE")

Iteration(Expression expr,

@Before("TIMES") @After("END")

@Separator(";") @Range(minOccurs = 1)

Statement[] statement) {...}

EBNF:
Iteration ::= <ITERATE> Expression <TIMES> Statement

Iteration ::= <ITERATE> Expression <TIMES>

Statement (<;> Statement)* <END>

of subconcepts. This is allowed by the way of using multiple
constructors. In the the Listing 4 extension of Iterate concept is
presented, where alternative notation is allowed. This notation
allows to specify more then one statements, but requires to
end the loop with END keyword.

F. Operator definition

Operators represent a type of language constructs that
benefits from special treatment. Otherwise they would require
more complex definition of concept relations to express rules
of priority and assiciativity.

In YAJCo it is possible to mark concept using @Operator

annotation and define its priority and associativity. Annotation
@Parentheses can be used to indicate the possibility to use
parentheses to explicitly express priority.

The Robot language contains Expression class with several
subclasses representing individual operations including addi-
tion (Add), subtraction, multiplication, etc. (see Listing 5).

G. References

YAJCo also supports automatic resolution of references in
input sentence. A constructor parameter that expects a refer-
ence to an object defined elsewhere is marked with @Refer-

ences annotation and a field that identifies the object is marked
with @Identifier annotation.

IV. CONCLUSION

The YAJCo tool allows to specify mapping between object
model and language grammar. Based on the specification it

Listing 5. Example of the operator definition
@Parentheses(left = "(", right = ")")

abstract class Expression {

abstract int eval();

}

class Add extends Expression {

Expression expr1, expr2;

@Operator(priority = 2)

Add(Expression expr2,

@Before("+") Expression expr2) {

this.expr1 = expr1; this.expr2 = expr2;

}

int eval(){return expr1.eval() + expr2.eval();}

}

can generate parser and pretty-printer capable of converting
text to object representation and vice versa.

It is based on the idea of the correspondence between object-
models and abstract syntax. Annotations were designed for
specifying concrete syntax elements missing in plain object
model. The mapping also reflects several typical patterns of
relation between model and grammar, including the @Separa-

tor for inserting a token between elements of a collection or
@Operator for specification of priority and associativity that
allow to use operations without superfluous parentheses.

We have successfully used YAJCo to develop several
domain-specific languages and also for teaching model-driven
software engineering approach. YAJCo is also used by DEAL
method [10] for creating languages of user interfaces. On the
other hand, YAJCo can be used to generate not only a parser of
textual DSL, but also a user interface allowing to fill language
sentences using forms [11].

REFERENCES

[1] M. Fowler, Domain Specific Languages. Addison-Wesley Professional,
2010.

[2] I. Halupka, J. Kollár, and E. Pietriková, “A task-driven grammar refac-
toring algorithm,” Acta Polytechnica, vol. 52, no. 5, 2012.

[3] S. Dmitriev. (2004, Nov.) Language oriented pro-
gramming: The next programming paradigm.
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/mps.pdf.

[4] S. Šimoňák, “Verification of communication protocols based on formal
methods integration,” Acta Polytechnica Hungarica, vol. 9, no. 4, pp.
117–128, 2012.

[5] J. Porubän, M. Forgáč, M. Sabo, and M. Běhálek, “Annotation based
parser generator,” Computer Science and Information Systems, vol. 7,
no. 2, pp. 291–307, 2010.

[6] J. Porubän, M. Sabo, J. Kollár, and M. Mernik, “Abstract syntax driven
language development: defining language semantics through aspects,”
in Proceedings of the International Workshop on Formalization of

Modeling Languages, ser. FML ’10. New York, NY, USA: ACM,
2010, pp. 2:1–2:5.

[7] S. Chodarev, D. Lakatoš, J. Porubän, and J. Kollár, “Language Com-
position based on the Composition of Concepts,” in Informatics 2013:

Proceedings of the Twelfth International Conference. TU, 2013, pp.
133–138.

[8] D. Lakatoš and J. Porubän, “Patterns for composition of domain-specific
languages,” Journal of Computer Science and Control Systems, vol. 6,
no. 1, pp. 62–66, 2013.

[9] R. E. Pattis, Karel the robot: a gentle introduction to the art of

programming. John Wiley & Sons, Inc., 1981.
[10] M. Bačíková, “Deal – a method for domain analysis of graphical user

interfaces,” in Poster 2013: 17th International Student Conference on

Electrical Engineering, 2013, pp. 1–5.
[11] M. Bačíková, D. Lakatoš, and M. Nosál’, “Automatized generating of

guis for domain-specific languages,” in CEUR Workshop Proceedings,
vol. 935, 2012, pp. 27–35.

