
Commands Composition User Interface Pattern

Sergej Chodarev
Department of Computers and Informatics
Technical University of Košice, Slovakia

Email: sergej.chodarev@tuke.sk

Abstract—Interactive user interfaces include commands that
allow to manipulate data or other objects. While in most cases
these commands are atomic, it is possible to support composition
of simple command elements into complex commands directly
during the user interaction. In this case commands have prop-
erties of a language. Prominent example of such interface is the
Vim text editor. In this paper properties of this user interfaces
design pattern are explored and compared with usual interfaces.
The ways to integrate this approach with modern interfaces are
also proposed.

I. INTRODUCTION

Todays user interfaces (UI) are predominantly oriented on
beginners and people that use an interface only sporadically,
therefore they need to be able quickly understand it and use
it to achieve their needs. For this reason ability to learn an
interface quickly – learnability – is the most emphasized
property of UI. On the other hand, there are applications
that are used by professionals on a day-by-day basis. These
applications would benefit from initial learning that would
allow to use them more efficiently.

One of the ways how to provide efficient and powerful
methods to use computer programs is to use a language-based
interaction instead of the see-and-point interaction (see for ex-
ample the Anti-Mac concept by Gentner and Nielsen [1]). The
language does not need to be a natural language that is hard to
analyze and ambiguous. Instead, a specially designed domain-
specific language [2] can be used, that is both understandable
by humans and easy to process by computers.

The goal of this paper is to explore an approach for
designing interactive user interfaces with language properties.
Let us call this approach the commands composition pattern.
The essence of the pattern is the following:

Provide a way for a user to compose basic command
elements into complex commands directly during interaction.
Command elements describe an action that need to be per-
formed and an object to apply the action.

Command elements should be very short, usually they have
a form of key presses. They can be seen as an advanced variant
of keyboard shortcuts that are combined together to achieve
some action.

Main example of the pattern is the Vim text editor. Thus
it is used to demonstrate the pattern in Section II. The main
contribution of the paper is description of the pattern that is
divided into three parts:

1) explanation of the problem the pattern can solve
(Section III),

2) description of the solution with possibilities of its
implementation (Section IV) and its alternative form
based on separate selection and editing steps (Sec-
tion V),

3) comparison with other approaches (Section VI).

II. EXAMPLE: VIM TEXT EDITOR

The Vim1 text editor and Vi, as its predecessor, are es-
sential parts of the Unix operating system and its derivatives.
Although, the editor is well known for usability problems
connected with its modes-based UI [3], the unique principles
of human-computer interaction laid in its core can be used as
an inspiration for future interfaces.

The Vim editor commands have an interesting property
of composability that is well-known among experienced Vim
users. For example see the comprehensive StackOverflow
answer [4] or blog post explaining the use of this property [5].
Comparison with other editors’ approaches is also presented
by Kozlowski [6].

In contrast to most other text editors, Vim starts in a normal
mode where keyboard keys correspond to editing or movement
commands. To actually insert some text, a user needs to switch
into insert mode. There is also a visual mode for selecting
text fragments and command-line mode for writing longer
commands.

Vim has a number of motion commands that allow to
change position of the cursor relative to the current position.
For example l moves to the next character and w (word) to
the beginning of the next word. It also has simple editing
commands like x which deletes a character after cursor or
s (substitute) which replaces character after cursor with a
new text (it switches to the insert mode to allow entering the
replacement).

Vim, however, also has more powerful commands which
allow more precise editing. For example d deletes specified
fragment of text. To specify the fragment, a movement com-
mand can be used. For example dl deletes character after
cursor (similar to x command) while dw deletes text to the
beginning of next word.

In addition to the movement commands, text fragments can
be specified using text objects. For example, command daw
deletes a word under cursor. In contrast to using movement
command (dw) this would work even if the cursor is positioned
in the middle of the word. Vim provides a number of built-in
text objects like words, sentences, paragraphs, text fragments
enclosed in parentheses, or XML tags. Additional text objects

1Available at http://www.vim.org/



are provided by plug-ins, including objects corresponding to
programming language syntax constructs (for example pro-
gram blocks or LATEX environments).

Composed commands allow to perform complex operations
as a single task, thus avoiding repetition. For example, with the
surround.vim plug-in2 one can change XML element around a
text using a single command and without the need to separately
change start and end tags and to move cursor between them.
So if there is such text (pipe sign “|” marks cursor position):

<em>important| text</em>

command cst<strong> (change surrounding tag) would
change <em> to <strong>:

<strong>important| text</strong>

In addition, this command can be undone as a whole using
standard undo command. What is important, such composed
commands are abstract and therefore can be easily applied and
repeated in different context. This is done by pressing “.” key.

III. PROBLEM

The commands composition pattern is suitable for appli-
cation that allows to execute a set of similar operations on
different ranges of elementary objects that form a hierarchy of
high-level objects without explicit representation.

For example in text editor there is a hierarchy of paragraphs
consisting of sentences consisting of words and at the lowest
level there are characters. Text editor, however, directly dis-
plays only characters, while words, sentences and paragraphs
are present only as sequences of characters recognizable by a
user as well as an application based on a well-known grammar.
Graphical objects have a similar hierarchy, for example a
polygon consists of several lines.

If an application allows to operate with content that has
such implicit hierarchical structure, it becomes ambiguous
what level of the hierarchy should user commands affect. It is
caused by the fact that in a visual representation of the content
only lowest level of the hierarchy is displayed explicitly and
other levels are present only implicitly as collections of lower
level elements.

For this reason, if a user points to some element in the
visual representation of the content and invokes some opera-
tion, it is not clear to which level of hierarchy the operation
should be applied. For example if a user presses Delete key,
should an application delete current character, whole word, or
a sentence.

IV. SOLUTION

The solution is to allow a user to enter commands by
composing operations with types of objects they operate on.
This means that instead of providing specialized commands
for different kinds of objects, application should provide a
language for expressing commands. The language should allow
to specify an operation that needs to be executed and an object
or range of objects that would be affected by the operation.

2Available at https://github.com/tpope/vim-surround

Specification of operation and objects may by itself be
composed. For example it may allow to specify some modifiers
that further refine behaviour of the command or the type of
object. For example, Vim text objects have either i or a
prefix for inner (excluding delimiters) and outer (including
delimiters) versions of the object. Command can also have a
number prefix specifying how many object instances it should
affect.

Realization of the pattern requires to choose a way of
invoking commands using a sequence of command elements
instead of a single action. The elements may have a form of key
presses, clicks, etc. The sequence should be displayed while it
is entered. This allows a user to see partially entered command
and cancel it in case of errors.

In case of applications that are not intended to enter text,
command elements can be inserted using keys corresponding
to letters. In text editors, where these keys are already used to
enter text, other solution should be found. In Vim it is solved
by introduction of separate normal mode in contrast to insert
mode where the keys change their interpretation.

Other option is to use modifier keys like Ctrl or Alt to dif-
ferentiate command elements from text characters. In contrast
to classical keyboard shortcuts consisting of a character key
pressed together with one or more modifiers, we would get a
sequence of such key presses. This type of shortcut sequences
(also called shortcut chords) are used in editors like Emacs or
Microsoft Visual Studio, however, with different semantics.

Modifiers itself can be used as command elements to
implement a simple form of the pattern. For example a lot
of common text editors use a Ctrl modifier to change edited
object from character to word and Shift changes movement
operation to selection.

Therefore it is easy to integrate a Vim-like command
composition into a modern UI as a special type of keyboard
shortcuts that an application may support in addition to con-
ventional user interface. Pressing a key with modifier would
not cause immediate invocation of some operation, but instead
it would switch the user to command composition mode where
he would be able to complete the started command.

It is important to visually indicate the switch by displaying
the entered key combination and other command elements
when they are entered. This can be done in periphery of
the window, for example in status line (see Fig. 1), or in a
primary area using some pop-up window. Peripheral version
does not cover part of the main working area, but may
require some highlighting to call user attention. Pop-up, on
the other end, allows to display more needed information, for
example contextual help that would improve learnability of the
command composition based interface.

Fig. 1. Prompt for second key of the command in status line of the Microsoft
Visual Studio



V. VARIATION: SELECT-THEN-EDIT MODEL

An alternative implementation of the described pattern is
what we call select-then-edit interaction model. It is a model
of operation where a user first selects an object or a collection
of objects and then invokes an editing operation on them. If
no selection is present then editing commands would operate
on the most elementary object under cursor. For example if a
user presses Delete key in a text editor, then a character after
cursor would be deleted. If, however, a user would first select a
whole sentence and then press Delete, then the sentence would
be deleted.

This model is used in most of the current graphical user
interfaces and can be viewed as a special case of the commands
composition pattern. Commands are there composed from two
parts: selection subcommand and editing subcommand.

Main advantage of such approach is the fact that selection
is usually immediately visible and therefore the process of
command construction is more visual3. User first selects ob-
jects and during this process he has a visual feedback about the
selected range, then he executes a command on the selection
he sees.

Despite the advantages, this approach requires powerful
selection operations to be comparable with the Vim-like ap-
proach. Usually, selection can be started at current cursor posi-
tion and then gradually extended using movement commands
with pressed Shift key or using a mouse. Even if an editor
provides powerful enough movement commands this still does
not provide alternative to Vim text objects.

In addition, compared to Vim-like solution, this approach
also does not have command repeatability property. This
limitation, however, can be overcome using macro recording.

To unleash full power of the command composition pattern
it is important to extend currently widespread implementation
with richer vocabulary. This requires addition of selection com-
mands for different text objects in addition to usual selection
based on movement.

For example the Extend Selection (Ctrl+W) command in
the JetBrains IntelliJ Idea4 is a step in this direction. It allows
to select a syntactically relevant part of text around current
cursor position. Each press of the key combination extends
the selection to the larger element of the text, thus moving to
the higher level of hierarchy.

Extend Selection command, however, still requires repeated
key presses to select desired fragment. Specialized selection
commands would overcome this limitation and in addition
they would allow selection of non-continuous fragments, for
example XML opening and closing tags without enclosed
text. It is important to use consistent keyboard shortcuts for
selection commands and same modifier keys if it is possible.

VI. COMPARISON WITH OTHER SOLUTIONS

The most trivial alternative to the commands composition
pattern is to simply ignore the problem described in Section III

3It is not a coincidence that a mode allowing such interaction in Vim is
called visual.

4Extend Selection command is documented at https://www.jetbrains.com/
idea/help/selecting-text-in-the-editor.html#d1701627e179

and apply operations only on elementary objects. Therefore, in
the Delete key press in an editor would cause deletion of one
character.

This solution may be suitable for casual users as it is very
easy to learn and at the same time allows users to operate
on higher levels by repeating commands or by manually
selecting corresponding sequence of low-level elements. This
approach of work is, however, much less efficient then direct
manipulation with high-level objects and this becomes prob-
lematic for professional users of an application. For this reason
specialized commands or shortcuts for most common objects
are often added. For example Ctrl+Delete to delete whole
word. This leads to introduction of separate ad-hoc commands
for different combinations of operations and objects. These
commands usually can be accessed using a menu and keyboard
shortcuts.

If the number of operations is large, menus would become
cluttered and require nested submenus. Keyboard shortcuts, on
the other hand, would suffer from limited number of keys and
thus require the use of different modifiers and combinations
of modifiers. Choosing intuitive and easily remembered key
combination for each operation would become a very hard
task. The result may become a collection of deep and complex
menus and ad-hoc shortcut key combinations that are hard
to remember. The problem can be mitigating by introducing
search functionality for commands, but this would not resolve
it fully.

The main advantage of the commands composition pattern
is, therefore, the ability to provide large number of commands
that can by described by a small set of elements. This makes
it simpler to learn commands compared to the situation where
every command would have a separate invocation method. A
user needs to learn only command elements and rules of their
composition (command language grammar).

On the other hand, such approach of interaction is not usual
for most of users and requires special learning. This approach
also suffers from low discoverability. For this reason it is
suitable only for professional users who can afford investment
of their time for improved productivity.

VII. RELATED WORK

Description of common solutions in form of patterns in-
spired by the work of Alexander [7] become quite wide-spread
in computer science. It is used in different areas from object-
oriented design [8] to XML to annotations mapping [9]. Design
patterns for user interfaces and human-computer interaction
are presented in several pattern collections, including a book
Designing Interfaces by Tidwell [10] or a more narrowly
focused work by Van Duyne et al. on design of web sites [11].
Overview of several user interface design patterns sources can
be found in the paper of Kruschitz and Hitz [12]. In contrast to
them, this paper discusses only a single pattern, not the whole
collection.

Language properties of user interfaces are covered in the
work of Bačı́ková et al. [13], which considers any definition
of user interface (for example in a form-driven way [14]) to
be also a definition of domain-specific language. For example,
a form defines a language for expressing data that are entered



into it. The authors also consider how language and domain
aspects of UI should be included in usability evaluation [15].
In this paper a narrower view on languages is used and it is
concerned only with commands for manipulating some content
that have some non-trivial grammar and are used directly
during user interaction with an application.

Experiments of van Nimwegen et al. [16], [17] show the
role of user interface on user performance and problem solving
strategies. The results suggest that user interfaces that support
internalization of information lead to better users performance
compared to interfaces that try to externalize information by
assisting users.

Experiment of Chen et al. is also devoted to comparing
different user interface styles [18]. In this case – graphical
and textual ones. The results confirmed that graphical user
interface lead to better performance of novice users, in the
case of experts, however, the difference was not significant.

An attempt to compare influence of command-line tools
and Vim editor with graphical integrated development envi-
ronment to the learning of programming was done by Dillon
et al. [19]. Part of the respondents, however, was not trained
in using Vim, so they failed to write any code in the editor.
This fact degrades the results of the comparison.

The other area that is significant for the topic of the
paper and is only briefly covered there is the help that an
application should provide its users to learn more efficient
interaction models and therefore become expert users. This
topic is covered extensively by Cockburn et al. [20].

VIII. CONCLUSION

This work presents an attempt to discuss the user interac-
tion pattern that was mostly overlooked. To fully evaluate the
potential of the pattern it is, however, needed to carry empir-
ical research on real users. Both comparison of an interface
based on commands composition with canonical interface and
comparison of different variants of the commands composition
(Vim-like and select-then-edit) are interesting topics of future
research. Evaluation of longterm advantages and disadvantages
of interface intended for experts is, however, much harder than
evaluation of interfaces for novices.

The comparison can be done on the existing examples of
the pattern implementation. Therefore another important task
is collection and analysis of such real-world examples.

More objective comparison and evaluation, however, would
require development of prototype user interfaces (either stan-
dalone or as extensions to existing software) that would realize
needed interaction models. This approach would decrease
accidental factors that may impair validity of acquired results.
In addition it would allow to design and evaluate improved
variants of the pattern. The main area for such improvement is
development of the ways how to lower learning costs required
to fully master such user interface.

ACKNOWLEDGMENT

This work was supported by project VEGA 1/0341/13
“Principles and methods of automated abstraction of computer
languages and software development based on the semantic
enrichment caused by communication”.

REFERENCES

[1] D. Gentner and J. Nielsen, “The Anti-Mac Interface,” Commun.
ACM, vol. 39, no. 8, pp. 70–82, Aug. 1996. [Online]. Available:
http://www.nngroup.com/articles/anti-mac-interface/

[2] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Computing Surveys, vol. 37, no. 4,
pp. 316–344, 2005.

[3] I. S. MacKenzie, Human-computer interaction: An empirical research
perspective. Morgan Kaufmann, 2013.

[4] J. Dennis, “Your problem with vim is that you don’t grok
vi,” StackOverflow answer, Dec. 2011. [Online]. Available: http:
//stackoverflow.com/a/1220118

[5] J. Carroll, “Vim text objects: The definitive guide,” Oct.
2011. [Online]. Available: http://blog.carbonfive.com/2011/10/17/
vim-text-objects-the-definitive-guide/

[6] M. Kozlowski, “Why Atom can’t replace Vim,” Mar.
2014. [Online]. Available: https://medium.com/@mkozlows/
why-atom-cant-replace-vim-433852f4b4d1

[7] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language:
Towns, Buildings, Construction. Oxford University Press, 1977.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[9] M. Nosál and J. Porubän, “Xml to annotations mapping definition with
patterns,” Computer Science and Information Systems, vol. 11, no. 4,
pp. 1455–1477, 2014.

[10] J. Tidwell, Designing interfaces. O’Reilly, 2010.
[11] D. K. Van Duyne, J. A. Landay, and J. I. Hong, The design of sites:

Patterns for creating winning web sites. Prentice Hall Professional,
2007.

[12] C. Kruschitz and M. Hitz, “Analyzing the HCI Design Pattern Variety,”
in AsianPLoP ’10: Proceedings of the 1st Asian Conference on Pattern
Languages of Programs. New York, NY, USA: ACM, 2010.

[13] M. Bačı́ková, J. Porubän, and D. Lakatoš, “Defining domain language
of graphical user interfaces,” in SLATE 2013: 2nd Symposium on
Languages, Applications and Technologies, vol. 29, 2013, pp. 187–202.

[14] S. Ristić, S. Aleksić, I. Luković, and J. Banović, “Form-driven applica-
tion development,” Acta Electrotechnica et Informatica, vol. 12, no. 1,
pp. 9–16, 2012.

[15] M. Bačı́ková and J. Porubän, “Domain usability, user’s perception,” in
Human-Computer Systems Interaction: Backgrounds and Applications
3, ser. Advances in Intelligent Systems and Computing, Z. S. Hippe,
J. L. Kulikowski, T. Mroczek, and J. Wtorek, Eds. Springer Interna-
tional Publishing, 2014, vol. 300, pp. 15–26.

[16] C. Van Nimwegen, H. Van Oostendorp, H. Tabachneck-Schijf et al.,
“The role of interface style in planning during problem solving,” in
The 27th Annual Cognitive Science Conference, 2005, pp. 2771–2776.

[17] C. van Nimwegen, H. van Oostendorp, D. Burgos, and R. Koper, “Does
an interface with less assistance provoke more thoughtful behavior?” in
ICLS’06: 7th International Conference on Learning Sciences. Inter-
national Society of the Learning Sciences, 2006, pp. 785–791.

[18] J.-W. Chen and J. Zhang, “Comparing text-based and graphic user
interfaces for novice and expert users,” in AMIA Annual Symposium
Proceedings, vol. 2007. American Medical Informatics Association,
2007, p. 125.

[19] E. Dillon, M. Anderson, and M. Brown, “Comparing Mental Models
of Novice Programmers when Using Visual and Command Line Envi-
ronments,” in ACM-SE’12: Proceedings of the 50th Annual Southeast
Regional Conference. New York, NY, USA: ACM, 2012, pp. 142–147.

[20] A. Cockburn, C. Gutwin, J. Scarr, and S. Malacria, “Supporting Novice
to Expert Transitions in User Interfaces,” ACM Computing Surveys,
vol. 47, no. 2, Nov. 2014.


